Simultaneous recording of Power & Power Quality measurements in one survey.

The perfect tool for Energy Saving and Power Quality control.

- Simultaneous Power & Power quality measurements
 Power/ Harmonics/ Waveform/ Power quality are recorded at all CHs. (Voltage: 3ch, Current 4ch)

- Helpful support functions
 Quick Start Guide, Wiring check and Sensor detection for easy and reliable measurement

- Measurement with high accuracy
 Guaranteed accuracy: ±0.3%rdg (energy), ±0.2%rdg (voltage/current)
 Complies with the International Standard IEC61000-4-30 Class S and the European Standard EN50160

- Remote monitoring on PC and Android device
 Remote checking of measurement in real-time is possible via Bluetooth communication. Recorded data can be saved in the supplied SD card. EN50160 report can be generated after survey by PC software.

- Various Clamp Current Sensors
 Various types of clamp and flexible sensors are available: from 1000mA Range up to 3000A Range and Earth leakage measurements

- Energy consumption check on site
 Trend and demand graphs for easy recognition. TFT color display with high resolution.

- IEC61010-1 CAT IV 300V, CAT III 600V, CAT II 1000V
Easily and securely
Waveform recordings

Quick Start Guide

One-Touch START/STOP Key for Quick Start Guide providing easy setup guides.

Power & Energy

Instantaneous value

Integration value

Demand

Wiring check

Can display voltage and current by vector per CH and also unbalance ratio.

Can display voltage and current by vector per CH and also unbalance ratio.

Wiring check function confirms connection and displays ideal vector (at the lower left corner) according to the selected wiring system, and shows connection errors.

USB Terminal

Digital Output Terminal

Analogue Input Terminal

SD card Interface

Waves for data analysis and setting via USB port

Automatic creation of graph and list from recorded data.

Uniform management of setting and recorded data acquired from multiple devices.

Data can be expressed in crude oil and CO2 equivalent values in the report.

(System requirement)

● OS: Windows 8/7/Vista/XP
● Display: XGA (Resolution 1024×768) extra or more
● Hard disk: Space required 1GB or more
● Other: With CD-ROM drive and USB port.

SD cards up to 2GB can be used.

Possible recording time when 2GB of SD is used

Possible recording time when 2GB of SD is used.

Graph

List

Graph:

List:

Displays harmonic content, rms value and phase angle of each order.

Can analyze harmonic currents that may contribute to damage capacitor banks for PF correction, over-heating transformers / neutral conductors / cables, unwanted tripping of breakers.

Dip

Dip, as the opposite of a swell, is a instantaneous voltage decrease, most of the time caused by switching ON large load such as motors or by downstream power line failure.

Dip

Dip, as the opposite of a swell, is a instantaneous voltage decrease, most of the time caused by switching ON large load such as motors or by downstream power line failure.

Dip

Dip, as the opposite of a swell, is a instantaneous voltage decrease, most of the time caused by switching ON large load such as motors or by downstream power line failure.

Dip

Dip, as the opposite of a swell, is a instantaneous voltage decrease, most of the time caused by switching ON large load such as motors or by downstream power line failure.

Dip

Dip, as the opposite of a swell, is a instantaneous voltage decrease, most of the time caused by switching ON large load such as motors or by downstream power line failure.

Dip

Dip, as the opposite of a swell, is a instantaneous voltage decrease, most of the time caused by switching ON large load such as motors or by downstream power line failure.

Dip

Dip, as the opposite of a swell, is a instantaneous voltage decrease, most of the time caused by switching ON large load such as motors or by downstream power line failure.

Dip

Dip, as the opposite of a swell, is a instantaneous voltage decrease, most of the time caused by switching ON large load such as motors or by downstream power line failure.

Dip

Dip, as the opposite of a swell, is a instantaneous voltage decrease, most of the time caused by switching ON large load such as motors or by downstream power line failure.

Dip

Dip, as the opposite of a swell, is a instantaneous voltage decrease, most of the time caused by switching ON large load such as motors or by downstream power line failure.

Dip

Dip, as the opposite of a swell, is a instantaneous voltage decrease, most of the time caused by switching ON large load such as motors or by downstream power line failure.

Dip

Dip, as the opposite of a swell, is a instantaneous voltage decrease, most of the time caused by switching ON large load such as motors or by downstream power line failure.

Dip

Dip, as the opposite of a swell, is a instantaneous voltage decrease, most of the time caused by switching ON large load such as motors or by downstream power line failure.
Can you close your distribution board door during surveys?

The KWE6315 facilitates safe testing by being extremely compact and with two clever option extras: a magnetic case (9132) for attaching it to the sides of metal enclosures and a power supply adaptor (8312) which takes the power for the instrument from the supply being measured.

<table>
<thead>
<tr>
<th>Set Model</th>
<th>KWE 6315-01</th>
<th>8125(500A)×3</th>
<th>KWE 6315-03</th>
<th>8130(1000A)×3</th>
</tr>
</thead>
</table>

Specifications:

- **Wiring connections**: 1P2W, 1P4W, 3P2W, 3P4W
- **Measurements and parameters**:
 - Voltage, Current, Frequency, Active power, Reactive power, Apparent power, Active energy, Reactive energy, Apparent power, Active energy, Reactive energy, Power factor (cosφ), Neutral current, Demand, Harmonics, Quality (Swell/Dip/Interruption), Transients/Over voltage, Instant current, Unbalance ratio, Capacitance calculation for PF correction unit, Ricker
- **Voltage (FMI)**:
 - Range: 600/1000V
 - Accuracy: ±0.2% ± 0.2% (full range, sine wave, 40~70Hz)
 - Display range: 0~130% of each range
 - Crest factor: 5 or less
 - Sampling speed of Voltage transient: 2.4μs
- **Current (FMI)**:
 - Range: 8126 (100A type) : ±100A/100A
 - Accuracy: ±0.3% ± 0.2% (full range, sine wave, 40~70Hz)
 - Allowable input: 1~110% of each range, 200% of each range (peak)
 - Display range: 0.15~130% of each range
 - Crest factor: 5 or less
 - Active power accuracy: ±0.3% ± 0.2% (full range, sine wave, 40~70Hz) ±0.1% (reading at power factor 0.5 against power factor 1)

- **Frequency meter range**: 40~70Hz
- **Power supply (AC line)**: AC100~240V/50~60Hz, 70V max
- **Power supply (DC battery)**: Alkaline size AA battery LR6 or Ni-MH (HR15-51)
- **Display**: 320×240(RGB) Pixel, 3.5inch color TFT display
- **Display update period**: 1 sec
- **Storage temperature and humidity range**: 0~60°C, less than 85% RH (without condensation)
- **Applicable standards**: IEC61010-1 CAT III, IEC61010-031, IEC61326, EN50160

Options:

- **Optional accessories**:
 - 14-bit (Voltage test lead), 7151 (Power cord), 7219 (USB cable), 9926-02 (ID card 2GB), 8351 (Carrying case for KWE6315), Input terminal plate, KEW6315 software, Calibration Certificate
 - Quick manual, Alkaline size AA battery, LR6

For inquiries or orders:

KYORITSU ELECTRICAL INSTRUMENTS WORKS, LTD.
2-5-20, Nakame, Meguro-ku, Tokyo, 152-0031 Japan
Phone:+81-3-3723-0131
Fax:+81-3-3723-0152
E-mail:info-eng@kew-ltd.co.jp

http://www.kew-ltd.co.jp