Instruction Manual

Power Quality Analyzer

KEW6315

KYORITSU ELECTRICAL INSTRUMENTS WORKS, LTD.

Contents	KEW6315
Contents	۶۰۰۰۰۰۰۰ 1
Unpacki	ng Procedure5
Safety w	arnings ·····8
Chap. 1	Instrument overview
1.1	Functional overview
1.2	Features
1.3	Constructional drawing 14
1.4	Steps for measurement 15
Chap.2 I	nstrument layout ······ 16
2.1	Display (LCD)/ Keys ······ 16
2.2	Connector 17
2.3	Side face 18
2.4	Voltage test lead and Clamp sensor 19
Chap.3 E	Basic operations 20
3.1	Key operation20
3.2	Icons on the LCD21
3.3	Symbols on the LCD22
3.4	Backlight and Contrast Adjustment22
3.5	Screens 23
	Inst/ Integration/ Demand
	• Vector24
	• Waveform 24
	Harmonic Analysis25
	Power quality 26
	• Settings ······ 26
Chap.4 (Getting started ·······27
4.1	Preparation 27
	Putting Input terminal plate on the Input terminal
	• Attaching Markers to Voltage test leads and Clamp sensors

4.2	Power Supply	29
	Battery ·····	···· 29
	 Battery Mark on the LCD/ Battery level 	30
	How to install batteries	31
	Power cord connection ······	31
	Power supply rating ······	32
4.3	Placing / removing SD card	33
	Inserting SD card	34
	Removing SD card	34
	4.4 Voltage test leads and Clamp sensor connection	35
	4.5 Start KEW6315	36
	Start-up Screen	36
	Cautionary message ······	36
	4.6 Recording procedures	37
	Start of recording ······	37
	End of recording ······	38
	 Start measurement with "Quick start guide" 	39
Chap.5	Settings	47
5.1	List of setting items ······	47
52	Basic setting	48
0.2	 Settings Settings of wiring system 	49
	Wiring connection	
	Settings of voltage measurement	50 50
	 Settings of voltage measurement 	53
		54
	 Settings of current measurement 	56
	 Settings of External input terminal/ reference frequency 	58
5.3	Measurement setting	59
	Settings of demand measurement ······	59
	Outline of demand measurement concept	62
	Settings for Harmonic analysis	63
	 Threshold setting for Power quality (Event) 	···· 65

<u>Contents</u>	KEW631	<u>5</u>
	• Filter setting for Flicker measurement	9
	Target power factor for Capacitance calculation7	0
5.4	Recording setting ······7	1
	Settings for recording items7	2
	• Saved items ······7	3
	Recording method 7	4
	Possible recording time	6
5.5	Other settings 7	7
	Settings for system environment 7	7
	KEW6315 Setting 7	9
5.6	Saved data 8	2
	• To delete, transfer or format the recorded data	2
	• Type of the saved data 8	7
	KEW6315 settings and Data loading	9
Chap. 6	Displayed items 9	2
6.1	Instantaneous value "W" ······9	2
	List display of the measured values9	2
	• Zoom display9	6
	Displaying Trend graph9	7
	Changing displayed items and display position9	9
6.2	Integration value "Wh" ······ 10	0
6.3	Demand 10	2
	Showing the measured values	2
	Shifts in specific period	3
	Demand change 10-	4
6.4	Vector 10	5
6.5	Waveform ····································	7
6.6	Harmonics	8
	• Displaying harmonics on the bar graph	8
	 Displaying the list of harmonics 	2
	-	

6	.7	Power quality 114				
	 Factors impair power quality and symptoms					
	 Displaying recorded events					
	 Displaying measured flicker values in list form 120 					
		Displaying trend graph of Pst, 1min	121			
		Displaying changes of Plt	122			
Chap).7 C	Other functions	123			
Chap).8 E	Device connection	125			
8	.1	Data transfer to PC	125			
8	.2	Using Bluetooth [®] function	126			
8	.3	Signal control ·····	126			
		Connection to input/ output terminals	126			
8	.4	Getting power from measured lines	128			
Chap	. 9	PC software for setting and data analysis	129			
Chap	.10	Specification	130			
1	0.1	Safety requirements ······	130			
1	0.2	General specification	130			
1	0.3	Measurement specification	133			
		Measured items and the number of analysis points	133			
		Items measured at Instantaneous measurement ······	134			
		Items to be calculated ······	137			
		Items measured at Integration measurement	140			
		Items measured at Demand measurement	143			
		Items measured at Harmonics measurement ······	144			
		Items measured at Power quality measurement ······	149			
1	0.4	Specification of Clamp sensor	152			
Chap). 11	1 Troubleshooting ·····	157			
1	1.1	General troubleshooting	157			
1	1.2	Error messages and actions	158			

Unpacking procedure

We thank you for purchasing our Power Quality Analyzer "KEW6315". Please check the contents and instrument before use.

• Items listed below are included with the standard set:

1	Main unit	KEW6315 :1 pce		
		MODEL7255 :1 set		
2	Voltage test lead	*red, white, blue, black: 1 pce for each		
		(with alligator clips)		
3	Power cord	MODEL7169 :1 pce		
4	USB cord	MODEL7219 :1 pce		
5	Quick manual	1 pce		
6	CD-ROM	1 рсе		
7	Battery	Alkaline size AA battery LR6: 6 pcs		
8	SD card	M-8326-02 :1 pce (2GB)		
9	Carrying case	MODEL9125 :1 pce		
10	Input terminal plate	1 pce		
11	Cable marker	8-color x 4pcs each (red, blue, yellow,		
		green, brown, gray, black, white)		

Optional parts

12	Clamp sensor	Depending on model purchased		
13	Instruction manual for	1 pce		
	Clamp sensor			
14	Magnetic carrying case	MODEL9132		
15	Power supply adapter	MODEL8312(CAT III 150V, CAT II 240V)		

KEW6315

Unpacking Procedure

10. Input terminal plate

888
888

11. Cable marker

Unpacking Procedure

12. Clamp sensor (depending on model purchased)

13. Instruction manual for Clamp sensor

14. Magnetic carrying case

15. Power supply adapter

50A Type(ø24/75mm)	M-8128/KEW8135
100A Type(ø24mm)	M-8127
200A Type(ø40mm)	M-8126
500A Type(ø40mm)	M-8125
1000A Type(ø68/110mm)	M-8124/KEW8130
3000A Type(ø150/170mm)	KEW8129/8133
10A Type(ø24mm)	M-8146
10A Type(ø40mm)	M-8147
10A Type(ø68mm)	M-8148
1A Type(ø24mm)	M-8141
1A Type(ø40mm)	M-8142
1A Type(ø68mm)	M-8143

Discontinued products: KEW8129/M-8141/M-8142/M-8143

Storage

Store the items as shown below after use.

• In case any of the items listed above are found to be damaged or missing or if the printing is unclear, please contact your local KYORITSU distributor.

Safety warnings

This instrument has been designed, manufactured and tested according to IEC 61010-1: Safety requirements for Electronic Measuring apparatus, and delivered in the best condition after passing quality control tests.

This instruction manual contains warnings and safety procedures which have to be observed by the user to ensure safe operation of the instrument and to maintain it in safe condition. Therefore, read through these operating instructions before starting to use the instrument.

A WARNING

- For about Instruction manual -
- Read through and understand the instructions contained in this manual before using the instrument.
- Keep the manual at hand to enable quick reference whenever necessary.
- The instrument is to be used only in its intended applications.
- Understand and follow all the safety instructions contained in the manual.
- Read the enclosed Quick manual after reading this instruction manual.
- As to the Clamp sensor use, refer to the instruction manual supplied with the sensor.

It is essential that the above instructions are adhered to. Failure to follow the above instructions may cause injury, instrument damage and/or damage to equipment under test. Kyoritsu assumes no responsibility for damage and injury caused by misuse or not following the instructions in the manual.

The symbol *M* indicated on the instrument, means that the user must refer to the related parts in the manual for safe operation of the instrument. It is essential to read the instructions wherever the symbol appears in the manual.

DANGER : is reserved for conditions and actions that are likely to cause serious or fatal injury.
 WARNING : is reserved for conditions and actions that can cause serious or fatal injury.
 : is reserved for conditions and actions that can cause injury or instrument damage.

Measurement Category

To ensure safe operation of measuring instruments, IEC 61010 establishes safety standards for various electrical environments, categorized as O to CAT IV, and called measurement categories. Higher-numbered categories correspond to electrical environments with greater momentary energy, so a measuring instrument designed for CAT III environments can endure greater momentary energy than one designed for CAT II.

- O : Circuits which are not directly connected to the mains power supply.
- CAT II : Electrical circuits of equipment connected to an AC electrical outlet by a power cord.
- CAT III : Primary electrical circuits of the equipment connected directly to the distribution panel, and feeders from the distribution panel to outlets.
- CAT IV : The circuit from the service drop to the service entrance, and to the power meter and primary overcurrent protection device (distribution panel).

• The instrument is to be used only in its intended applications or conditions. Otherwise, safety functions equipped with the instrument will not work, and instrument damage or serious personal injury may
occur. Verify proper operation on a known source before taking action as a result of the indication of the instrument
With attention to the measurement category to which the object under test belongs, do not make
measurements on a circuit in which the electrical potential exceeds the following values.
• Do not attempt to make measurement in the presence of flammable gasses. Otherwise, the use of the
instrument may cause sparking, which can lead to an explosion.
 Never attempt to use the instrument if its surface or your hand is wet.
- Measurement -
• Do not exceed the maximum allowable input of any measuring range.
Never open the Battery compartment cover during a measurement.
Do not try to replace batteries during a measurement
 Brand and type of the batteries to be used should be harmonized.
- Power cord -
 Connect the Power cord to an outlet.
 Use only the Power cord supplied with this instrument.
- Power supply connector -
• Never touch the Power supply connector although it is insulated while the instrument is operating with
Datteries.
Use only the ones supplied with this instrument.
 Choose and use the test leads and caps that are suitable for the measurement category.
 When the instrument and the test lead are combined and used together, whichever lower category either of them belongs to will be applied. Confirm that the measured voltage rating of the test lead is not exceeded.
 Do not connect a Voltage test lead unless required for measuring the desired parameters. Connect Voltage test leads to the instrument first, and only then connect them to the circuit under test.
 Keep your fingers behind the protective fingerguard and barrier during a measurement. Protective fingerguard and Barrier: provides protection against electrical shock and ensuring the minimum required air and propaga distances.
 Never disconnect the voltage test leads from the connectors of the instrument during a measurement (while the instrument is energized)
 Do not touch two lines under test with the metal tips of the test leads. Never touch the metal tips of the test leads.
• Stop using the test lead if the outer jacket is damaged and the inner metal or color jacket is exposed.
- Clamp sensor -
 Use only the ones dedicated for this instrument.
 Confirm that the measured current rating of the test lead and the maximum rated voltage are not
 Do not connect a Clamp sensor unless required for measuring the desired parameters
 Connect sensors to the instrument first, and only then connect them to the circuit under test.
 Keep your fingers behind the barrier during a measurement.
Barrier: provides protection against electrical shock and ensuring the minimum required air and creepage distances.

- Never disconnect sensors from the connectors of the instrument while the instrument is in use.
- Connect to the downstream side of a circuit breaker since a current capacity at the upstream side is large.
- Do not touch two lines under test with the metal tips of the test leads.

▲ Caution

- Caution should be taken since conductors under test may be hot.
- Never apply currents or voltages exceeding the maximum allowable input for the instrument for a long time.
- Do not apply currents or voltages for the Clamp sensors or Voltage test leads while the instrument is off.
- Don't use the instrument at dusty places or to be spattered.
- Don't use the instrument under a strong electric storm or in the vicinity of energized object.
- Never give strong vibrations or drop shocks.
- Insert an SD card to the slot with the top side turned up. If the card is inserted up-side-down, the SD card or the instrument may be damaged. Confirm the
- While using an SD card, do not replace or remove the card. (The Lar symbol blinks while accessing SD card.) Otherwise, the saved data in the card may be lost or the instrument may be damaged.

- Clamp sensor -

- Do not bend or pull the cable of the Clamp sensor.
- Types of the current sensors used for measurements should be the same.

- Treatment after use -

- Power off the instrument and disconnect the Power cord, Voltage test leads and Clamp sensors from the instrument.
- Remove the batteries if the instrument is to be stored and will not be in use for a long period.
- Remove the SD card when carrying the instrument.
- Never give strong vibrations or drop shocks when carrying the instrument.
- Do not expose the instrument to direct sunlight, high temperatures, humidity or dew.
- Use a damp cloth with neutral detergent or water for cleaning the instrument. Do not use abrasives or solvents.
- Do not store the instrument if it is wet.

Carefully read and follow the instructions: \triangle DANGER, \triangle WARNING, \triangle CAUTION and NOTE () described in each section.

Meaning of symbols on the instrument:

\wedge	User must refer to the explanations in the instruction manual.	
	Instrument with double or reinforced insulation	
~	✓ AC	
	(Functional) Earth terminal	

1.2 Features

1.2 Features

This is a Clamp-type Power Quality Analyzer that can be used for various wiring systems. It can be used for simple measurements of instantaneous/ integration/ demand values, and also for analysis of harmonics and events related to power quality and for the simulation of power factor correction with capacitor banks. Moreover, it can display waveforms and vectors of voltage and current. Data can be saved either on the SD card or in the internal memory, and can be transferred to PC via USB, or in real time via Bluetooth[®] communication.

Safety construction

Designed to meet the international safety standard IEC 61010-1 CAT IV 300V/ CAT III 600V/ CAT II 1000V. Power quality analysis

KEW6315 is designed to meet the international standard IEC61000-4-30 Class S and can measure frequency and r.m.s. voltage with high accuracy, and also can analyze harmonics. Moreover, it can measure swell, dip, interruption, transient, inrush current and flicker, gapless, all at once.

Power measurement

KEW6315 measures active/reactive/apparent power, electrical energy, power factor, r.m.s. current, phase angle and neutral current simultaneously.

Wiring configuration

KEW6315 supports: Single-phase 2-wire (4-system), Single-phase 3-wire (2-system), Three-phase 3-wire (2-system) and Three-phase 4-wire.

Demand measurement

Electricity consumption can be easily monitored so as not to exceed the target maximum demand values.

Waveform/ vector display

Voltage and current can be displayed by waveform or vector.

Saving data

KEW6315 is endowed with a logging function with the preset recording interval. Data can be saved by manual operation or by specifying date & time. Screen data can be saved by using the Print Screen function.

Dual power supply system

KEW6315 operates either with AC power supply or with batteries. Size AA alkaline dry-cell batteries and size AA Ni-MH rechargeable batteries can both be used. To charge size AA Ni-MH rechargeable batteries, use the charger which is manufactured by the same company as the batteries. In the event of power interruption, while operating with AC power supply, power to the instrument is automatically restored by the batteries in the instrument.

Large display

TFT color display with large screen.

Light & compact design

Clamp sensor type, compact and light weight design.

Application

Data in the SD card or the internal memory can be saved in PC via USB. Analysis of the downloaded data and instrument settings are possible by using the special software "KEW Windows for KEW6315". Real-time communication with android devices is available via Bluetooth[®].

Input/ Output function

Analog signals from thermometers or light sensors can be measured simultaneously with electrical power data via 2 analog inputs (DC voltage); when any events related to power quality occur, signals can be transmitted to alarm devices via one digital output.

1.3 Constructional drawing

1.4 Steps for measurement

Read through the operating instructions described in "Safety warnings" (P.8) before starting to use the instrument.

Chap.2 Instrument layout

2.1 Display (LCD)/ Keys

2.2 Connector

Power Connector

Wiring configuration		AC Voltage Input Terminal	Current Input Terminal*
Single-phase 2-wire (1-system)	1P2W×1	VN, V1	A1
Single-phase 2-wire (2-system)	1P2W×2	VN, V1	A1, A2
Single-phase 2-wire (3-system)	1P2W×3	VN, V1	A1, A2, A3
Single-phase 2-wire (4-system)	1P2W×4	VN, V1	A1, A2, A3, A4
Single-phase 3-wire (1-system)	1P3W×1	VN, V1, V2	A1, A2
Single-phase 3-wire (2-system)	1P3W×2	VN, V1, V2	A1, A2, A3, A4
Three-phase 3-wire (1-system)	3P3W×1	VN, V1, V2	A1, A2
Three-phase 3-wire (2-system)	3P3W×2	VN, V1, V2	A1, A2, A3, A4
Three-phase 3-wire 3A	3P3W3A	V1, V2, V3	A1, A2, A3
Three-phase 4-wire	3P4W×1	VN, V1, V2, V3	A1, A2, A3

* Measurements of r.m.s. values and harmonics are possible at the Current terminals, which are not used for wiring connection.

* Types of the current sensors used for measurements should be the same.

2.3 Side face

< When the Connector cover is closed. >

< When the Connector cover is opened. >

Analog input/ Digital output terminals

2.4 Voltage test lead and Clamp sensor

<Alligator clip> * Attached to the top part of voltage test lead

Protective fingerguard and barrier is a mechanical safety part and provides protection against electrical shock and ensuring the minimum required air and creepage distances. Keep your fingers and hands behind the protective fingerguard and barrier during a measurement.

- 19 -

3.2	Icons on the LCD			
	lcon	Status		
		KEW6315 is operating with battery. This icon varies in 4 steps according to the battery power condition.		
	-	KEW6315 is operating with AC power.		
	35#	Holding the display update.		
	<u></u>	Keys are locked.		
	a∭⊗	Buzzer is off.		
		SD card is set and available.		
		Recording the data on the SD card.		
		Available free space in the SD card is not enough.		
		Failed to access to the SD card.		
		Internal memory is available. * This icon is displayed when a measurement starts without SD card		
		Recording the data in the internal memory.		
		Available free space in the internal memory is not enough.		
	II WAIT	Stand-by mode		
	OREC	Recording the measured data.		
	FULL	Capacity of recording media is full.		
	Ø	USB is available.		
	8	Bluetooth [®] is available.		

3.3 Symbols on the LCD

V*1	Phase voltage	VL*1	Line voltage	A	Current	
Ρ	Active + consumption power - regenerating	Q	Reactive + lagging power - leading	S	Apparent power	
PF	Power + lagging factor ₋ leading	f	Frequency			
DC1	Analog input voltage at 1ch	DC2	Analog input voltage at 2ch			
An*2	Neutral current	PA* ³	Phase + lagging angle - leading	C* ³	Capacitance calculation	
WP+	Active power energy (consumption)	WS+	Apparent power energy (consumption)	WQi+	Reactive power energy (lagging)	
WP-	Active power energy (regenerating)	WS-	Apparent power energy (regenerating)	WQc+	Reactive power energy (leading)	
THD	Voltage/ Current total distortion factor					
Pst (1min)	Voltage flicker (1 min)	Pst	Short term voltage flicker	Plt	Long term voltage flicker	

^{*1} W screen: Displays of V and VL can be "customized" when "3P4W" is selected.

^{*2} W screen: "An" is displayed only when "3P4W" is selected.

^{*3} W screen: Displays of PA and C can be "customized".

3.4 Backlight and Contrast Adjustment

Hold down the " ()" **CD** Key at least 2 sec to show the sliding bar to adjust the backlight brightness and display contrast. Use the **Cursor** Key to slide the cursor on the bar for the adjustment. Press the **ENTER** Key and exit from the adjustment mode. Press the **ESC** or **LCD** Key again to cancel the adjustment and exit from the adjustment mode.

3.5 Screens

Inst/ Integration/ Demand

w/wh Switching screens

Press the F1 key to toggle the screens.

Waveform

Switching screens

Power quality

	Event		Flicker						
QUALITY		8 QUAL	ITY		۵	•	2013/01/01 23:54:19		
All events	Occurrence	Ps	Pst Calc.						
💁 101.0 V	2013/07/18 10:45:43.136		1di	2ch	3ch				
50.4 V	2013/07/18 10:45:43.136	V :	230.0	230.4	230.5	٧			
8/.1 V	2013/07/18 10:45:35.136	Pst: 1min	0.804	1.028	1.017		V		
128.5 V	2013/07/18 10:45:27.136	Pst:	0.804	1.026	1.022		Pst		
-21/.1 V	2013/07/18 10:45:27.136	MAX	0.804	1.035	1.034		(1min)		
50.4 V	2013/07/18 10:45:18.136	Plt:	0.804	1.027	1.025		P1+		
8/.1 V	2013/07/18 10:45:10.136	MAX	0.804	1.028	1.028		1.00		
🔚 128.5 V	2013/07/18 10:45:02.136			f:	59.99	Hz			
Flicker Det	ection	Event							
			_						
(F1) -		((F	1))						

Settings

4 Getting started

4.1 Preparation

Putting Input terminal plate on the Input terminal

Six Input terminal plates are supplied with this instrument. Choose one Plate which matches the standard cord colors where the instrument is used. Put the Plate to the Input terminal observing the orientation. * Clean the Input terminal before putting the Plate and confirm it isn't wet.

Input terminal plate

Put a proper Input terminal plate.

	VN	V1/A1	V2/A2	V3/A3	A4
TYPE 1	blue	red	green	black	yellow
TYPE 2	blue	brown	black	gray	yellow
TYPE 3	black	yellow	green	red	white
TYPE 4	blue	black	red	white	yellow
TYPE 5	white	black	red	blue	yellow
TYPE 6	black	red	yellow	blue	white

Attaching Markers to Voltage test leads and Clamp sensors

Attach Markers to the both ends of the Voltage test leads and Clamp sensors harmonized with the Input terminals. * Supplied Markers are 32 pcs in total : 4pcs each color (red, blue, yellow, green, brown, gray, black, white).

Marker (32 pcs in total)

Attach Markers to the both ends of a Sensor.

Attach Markers to the both ends of a Voltage test lead.

Battery

4.2 Power Supply

Battery

KEW6315 operates with either an AC power supply or batteries. Capable of performing measurements in the event of AC power interruption, power to the instrument is automatically restored by the batteries installed in the instrument. Size AA alkaline dry-cell batteries (LR6) or size AA Ni-MH batteries can both be used. To charge the rechargeable battery, use the charger which is manufactured by the same company as the batteries. KEW6315 cannot charge batteries.

* Size AA alkaline dry-cell batteries (LR6) are supplied as accessories.

\land DANGER

- Never open the Battery compartment cover during a measurement.
- Brand and type of the batteries to be used should be harmonized.
- Never touch the Power supply connector, although it is insulated, while the instrument is operating with batteries.

• Ensure that the Power cord, Voltage test leads and Clamp sensor are removed from the instrument, and that the instrument is switched off when opening the Battery compartment cover for battery replacement.

- Never mix new and old batteries.
- Install batteries in correct polarity as marked inside the Battery compartment area.

Batteries are not installed in the instrument at the time of purchase. Please insert the supplied batteries before starting to use the instrument. Battery power is consumed even if the instrument is being off. Remove all the batteries if the instrument is to be stored and will not be in use for a long period. When the instrument is powered by an AC power supply, it doesn't operate with batteries.

If an AC supply is interrupted and the batteries have not been inserted, the instrument goes off and all data may lost.

Battery Mark on the LCD/ Battery level

Power supply icon changes as follows, and the battery icon varies according to the battery condition.

-	Powered by AC			4-level
^o ower supply icon	Powered by battery		Batt	Possible continuous measurement hours: - approx 3 hours with size AA alkaline batteries, and - approx 4.5 hours with size AA Ni-MH (1900mA/h) batteries. * These are ref. values with LCD turned off.
T			ery level	Instrument works normally. * Voltage of full-charged Ni-MH battery is lower than that of the full-charged alkaline battery, so the level indicator may not be the same as the one shown to the left even after the batteries are fully charged. Measurement continues, but data save is ceased. (Further data will not be saved, but the data measured before the battery level drops to the lowest level are saved.)

W/	W	/h					Σ]	-	0	/01/2014 5:54:20
		1ch		2	!ch		3ch				
۷	:	200	.0	20	00.1	1	99	.7	V]	
A	:	450	.1	- 44	48.9	2	299.	.6	Α		
Ρ	:	90	.0	- 8	39.2		58	.9	k₩		
Q	:	2	.8	'	10.5		10.	.4	kvar		
S	:	90	.0		39.8		59	.8	kVA		
PF	:	0.9	99	-0.	.992	6).98	84			Inst
P	:	238	.4	k₩	f:	5	i0.0	00	Hz		Ανα
Q	:	2	.5	kvar						┢	Max
S	:	240	.0	kVA	A4 :	4	48	.9	Α	┝	Mán
PF	:	0.9	93		An :	2	248.	.6	Α	L	MIN
DC1	:		0	mV	DC2 :			0	mV	6	/30min
	W	h		Zoo	m	1	ren	nd	C	us	tomize

How to install batteries:

Follow the steps below and install batteries.

- 1 Disconnect the power cord, voltage test leads and clamp sensors from the instrument, and power off the instrument.
- 2 Loosen two Battery compartment cover-fixing screws and remove the Cover.
- 3 Take out all the batteries.
- 4 Insert six batteries (Size AA alkaline battery: LR6) in correct polarity.
- 5 Install the Battery compartment cover and fix it with two screws.

Power cord connection

The following should be checked before the connection.

\Lambda DANGER

1

- Use only the Power cord supplied with this instrument.
- Connect the Power cord to a mains outlet. The mains supply voltage must not exceed AC240V.

(max rated voltage of supplied Power cord MODEL7169 : AC125V)

WARNING

- Confirm that the instrument is powered off, and then connect the Power cord.
- Connect the Power cord to the instrument first. The cord should be firmly connected.
- Never attempt to make measurement if any abnormal conditions are noted, such as a broken cover and exposed metal parts.
- When the instrument is not in use, disconnect the Power cord from the outlet.
- When unplugging the cord from the mains socket outlet, do so by removing the plug first and not by pulling the cord.

Follow the procedure below, and connect the Power cord.

- 1 Confirm that the instrument is powered off.
- 2 Connect the Power cord to the Power connector on the instrument.
- 3 * Connect another end of the Power cord to the outlet.
- * Getting KEW6315 started is possible 2 seconds after it is connected to a power source. The 0 Key

does not work in this period.

Power supply rating

Rating of power supply is as follows.

Rated supply voltage	100 to 240V AC (±10%)			
Rated power supply frequency	45 to 65Hz			
Max power consumption	7VA max			

4.3 Placing / removing SD card

Check the following points before using SD card.

• Follow the instructions described in "Inserting SD card" and insert the SD card to the slot with the top side

turned up. If the card is inserted up-side-down, the SD card or the instrument may be damaged.

- While using an SD card, do not replace or remove the card. (The symbol blinks while accessing SD card.) Otherwise, the saved data in the card may be lost or the instrument may be damaged.
- The indicator "
 CRE

" blinks during record. Do not remove the SD card. Otherwise, the saved data

or the instrument may be damaged. Do not remove the card until the record ends and the pop-up message "Stop recording." disappears.

Notes:

- Newly purchased SD cards must be formatted with KEW6315 before use. Data might not be successfully saved on SD cards that are formatted with a PC. For the details, please refer to "*Format*" (P.86) in this manual.
- If the SD card has been frequently used for a long period, the life of the flash memory may be expired and further data may not be saved on it. In such a case, please replace the card with a new one.
- The data in the SD card might be damaged or lost by accident or failure. It is recommended to backup the recorded data periodically. Kyoritsu will not be liable for any loss of data or any other damages or losses.

Inserting SD card:

1 Open the Connector cover.

2 Insert the SD card into the SD card slot with the topside turned up.

Removing SD card:

- 1 Open the Connector cover.
- 2 Gently push the SD card towards inside, and then the card comes out.
- 3 Remove the card slowly.
- 4 Then close the cover. Please use the instrument with the Connector cover closed unless it is not necessary.

Connector cover

³ Then close the cover. Please use the instrument with the Connector cover closed unless it is not necessary.
Check the following before connecting the test leads and sensors.

- Use only the Voltage test leads supplied with this instrument.
- Use the dedicated Clamp sensors for this instrument, and confirm that the measurement current rating of the Clamp sensor is not exceeded.
- Do not connect all the Voltage test leads or Clamp sensors unless required for measuring the desired parameters.
- Connect the test leads and sensors to the instrument first, and only then connect them to the circuit under test.
- Never disconnect the Voltage test leads and sensors while the instrument is in use.
- Keep your fingers and hands behind the protective fingerguard and barrier during measurement.

🔨 WARNING

- Confirm that the instrument is powered off, and then connect the Power cord.
- Connect the Power cord to the instrument first. The cord should be firmly connected.
- Stop using the test lead if the outer jacket is damaged and the inner metal or color jacket is exposed.

Follow the procedure below, and connect the Voltage test leads and Clamp sensors.

1 Confirm that the instrument is powered off.

2 Connect the appropriate Voltage test lead to the AC Voltage input terminal on the instrument.

3 Connect the appropriate Clamp sensor to the Current input terminal on the instrument. Match the direction of the arrow mark indicated on the output terminal of the clamp sensor and the mark on the Current input terminal on the instrument.

Number of Voltage test leads and Clamp sensors to be used will be different depending on the wiring configuration under test. For further details, refer to "*Wiring diagrams*" (**P.50**) in this manual.

4.5 Start KEW6315

Start-up Screen

Hold down the **POWER** key until the following screen is displayed on the LCD. To power off the instrument, hold down the **POWER** key at least 2 seconds.

 Model name and software version will be displayed upon powering on the instrument.
 Stop using the instrument if it does not get started properly, and refer to "*Chap. 11 Troubleshooting*" (P.157) in this instruction manual.

2 If this is not the first time starting the instrument, the screen displayed last from the previous operation will appear.

Cautionary message

If the connected Clamp sensors are not the same ones used during the previous test, the list of the connected sensors will be displayed for 5 sec; but the settings will not be updated automatically. Press the **SETUP** key and re-detect the sensors or modify the settings directly. KEW6315 retains and adopts the previous settings if no sensor is connected.

Start of recording			NEW0313
4.6 Recording proce	edures		
Start of recording			
Press the (START /STOP) Key.	Guide Start recording Quick start of Start not [ESC]:CANCEL	□ - ^{2013/02/04} 22:50:30 guide w [ENTER]:0K	

Choose either "Quick start guide" or "Start now" to start recording. One can do the simple and fast start-up by selecting "Quick start guide". Only the settings of wiring and recording are included in the "Quick start guide". Press the SETUP key and adjust advanced settings if necessary. When the necessary settings are already done, or no change of settings is required, select "Start now" to start recording. Before starting measurement, ensure all safety and necessary preparations have been checked.

Move the blue highlight to "Quick start guide" or "Start now". - Confirm.

KEW6315

Check the information about recording, or stop the recording.

Items displayed on the LCD				
Data no.	Data no. of the recorded data. It is also used as a folder name at data saving.			
Elapsed time	The time that ela	The time that elapses while recording.		
	Manual	Show the "Recording start date and time".		
	Constant rec.	Show the "Recording start/ end date and time".		
Recording method	Time period rec	Show the "Recording start date and time", "Recording Period"		
Time period rec.		and "Recording Time".		
Save to	Data location to save the data.			
Items recorded	Items being recorded.			

 \rightarrow Move the blue highlight to "Cancel" or "Stop". \rightarrow (ENTER) Confirm. (ESC) Cancel.

Start measurement with "Quick start guide"

Wh

Zoom

Trend

Customize

Start measurement with "Quick start guide"

(2) Wiring system

Any of the following can be selected.

Reverse clamping switches the symbols (+/-) for active power (P).

*Types of the current sensors used for measurements should be the same.

(4)(5) Test Environment Check

Switching screens

Test environment check

Select "<u>Start test</u>" and press the "ENTER" button to start the test. The test result will be displayed on the screen.

Select and press the "ENTER" on "OK"/

"NG" to see the details.

Wiring check

Test results of each item will be displayed.

* NG result may be given, even if the wiring is correct, at the measurement site under bad power factors.

Guid	e	🔲 📲 "ii	:48:2
241	.9 v 0.0°	1.7	_
2· 2:	Frequency	ок	LE
A 4:	Voltage input	OK	
az 4:	Voltage phase	ОК	$ \rangle$
SE 4	Voltage balance.	OK	
4	Current input	OK	1
Va	Current phase	OK	A1
$\left(\right)$	[ENT	ER]:CLOSE	
[ESC]	BACK		

Self-diagnosis

Operating condition of the instrument system will be checked and the result will be displayed.

Guide		2013/07/23 19:43:08
Scheck the test e	nvironment	
Res	sult	
1. RTC	OK	
2. Flash Memor	у ОК	
3. SRAM	OK	
4. FPGA	ок	
5. Bluetooth		
6. SD Card	O K	
	[ENTER]:CL	.0SE
0 2 3 3 4 5	6)0)0	0 (9 (1

Sensor detection

The connected sensors are automatically detected and their max Ranges will be set.

NG judgment

Wiring check

Close the result display. Then, the blinking vectors and the values of NG items will be displayed. If everything is OK, the ideal vector diagram will be displayed in the lower left corner.

Criteria of judgment and cause

Check	Criteria of Judgment	Causes
Frequency	Frequency of V1 is within 40 - 70Hz.	 Voltage clip is firmly connected to the DUT? Measuring too high harmonic components?
AC Voltage input	AC voltage input is 10% or more of (Nominal voltage x VT).	 Voltage clip is firmly connected to the DUT? Voltage test lead is firmly connected to the AC voltage input terminal on the instrument?
Voltage balance	 AC voltage input is within ±20% of reference voltage (V1). * (not checked for single-phase wiring) 	 Settings are matched with the wiring system under test? Voltage clip is firmly connected to the DUT? Voltage test lead is firmly connected to the AC voltage input terminal on the instrument?
Voltage phase	Phase of AC voltage input is within ±10° of reference value (proper vector).	 Voltage test leads are properly connected? (Connected to proper channels?)
Current input	Current input is 5% or more and 110% or less of (Current Range x CT).	 Clamp sensors are firmly connected to the Power input terminals on the instrument? Setting for Current Range is appropriate for input levels?
Current phase	 Power factor (PF, absolute value) at each CH is 0.5 or more. Active power (P) at each CH is positive value. 	 Arrow mark on the Clamp sensor and the orientation of flowing current coincide with each other? (Power supply to Load) Clamp sensors are connected properly?

Self-diagnosis

If "NG" judgment is given frequently, there might be something wrong with the instrument. Stop using the instrument and refer to "*Chap.11 Troubleshooting*" (P.157).

Guide	2013/07/23 19:43:08
SCheck the test enviro	onment.
Result	
1. RTC	. ок 📃
2. Flash Memory	ок 🗾
3. SRAM	ок 🗔
A EDCA	
5. Bluetooth	NG
FENTI	ER1:CLOSE
0 0 0 0 0 0	0 0 0 0

Sensor detection

If the detection result is NG, each sensor type will be displayed in red.

Guide 🗖 🔫	2013/07/23 20:28:57 Gu	ide	2013/07/23
Scheck the test environment.		Check the test enviro	onment.
Result		Result	
1ch 8125:MAX 500A, Φ40mm 2ch 8128:MAX 50A, Φ24mm 3ch 8125:MAX 500A, Φ40mm		1ch ???? 2ch 8125:MAX 500A, 3ch 8125:MAX 500A,	• N G • 40mm • 40mm
[ENTER]:CLOS		[ENT	ER]:CLOSE

Criteria of judgment and cause

Check	Causes
Type of current sensor	 Types of the connected current sensors are harmonized? Types of the current sensors used for measurements should be the same.
??? (cause unknown)	 Current sensors are firmly connected to the instrument? If any failures are in doubt: Exchange the connections of the sensors and test again. Connect the current sensor, for which "NG" is given, to the CH on which another sensor is properly detected. If the result "NG" is given for the same CH, a defect of the instrument is suspected. A defect of sensor is suspected if "NG" is given for the same sensor connected to another CH. Stop using the instrument and the sensor, if any defects are in doubt, and refer to "Chap. 11 Troubleshooting" (P.157) in this manual.

(8)(9) Setting for recording method

The following explains how to set recording start date and time.

(8) Specify	y the recording start date and time.
Guide	2913/97/94
®Set a rec	ording time.
REC Star	t 2013/08/02 08:00
REC End	2013/08/07 18:00
	Next
LEGEL. DACK	[Enter].0K

During the selected period, KEW6315 records data at the preset intervals.

Example: When the date & time are specified as above, the recording period will be as follows.

From 8:00 on August 2, 2013 to 18:00 on August 7, 2013,

KEW6315 records data during the selected time period at the preset intervals, and repeats the recording process during the preset time span.

Example: When the time period is specified as above, the recording period is as follows.

- (i) 8:00 to 18:00 on August 1, 2013,
- (ii) 8:00 to 18:00 on August 2, 2013,
- (iii) 8:00 to 18:00 on August 3, 2013,
- (iv) 8:00 to 18:00 on August 4, 2013,
- (v) 8:00 to 18:00 on August 5, 2013,
- (vi) 8:00 to 18:00 on August 6, 2013,
- (vii) 8:00 to 18:00 on August 7, 2013, and
- (viii) 8:00 to 18:00 on August 8, 2013.

Switching of displayed parameters

Basically, the **Cursor** Key $\overset{\textcircled{}}{\forall}$ is used for selecting an item, the **ENTER** Key $\overset{\textcircled{}}{\forall}$ is for confirming the selection, and the **ESC** Key $\overset{\textcircled{}}{(sc)}$ is for canceling the alternation. Taking the procedures in "*Quick Start Guide*" as an example, Key operations are explained as follows.

Guide			- 2013/02/04 22:50:30
Start recordin	nq		
Oute	rk start	auide	4
Qui	uk start	guiuc	
	Start n	OW	
[ESC]:CANCEL		ΓEN	ITER1:OK

Press the **Cursor** Key to move the **blue highlight**, showing the item is being selected, over the items in blue letters. In the screen to the left is the Recording start screen. Press the **Cursor** Key and move the blue highlight on the desirable recording method, and press the **ENTER** Key to confirm the selection. To quit the start guide, press the **ESC** Key.

Guide	
②Select the wiring :	system to be tested.
1P2W-1 1PZ	I-1 3P3W-1
1P2W-: 1P3	I-2 3P3W-2
1P2W-	SP3W3A
1P2W-	3 P4W
()(2)(3)(3)(5)	©\@\ @ \@
[ESC]: BACK	[ENTER]:OK

If the display of the selectable items is similar to the one shown to the left, then the up, down, right and left **Cursor** Keys can be used. Use the **Cursor** Keys to select the proper wiring system and press the **ENTER** Key to confirm the selection. To return to the previous screen and cancel the changes, press the **ESC** Key.

To alter the numbers such as **Date/ Time**, move the blue highlight over digits with the right and left **Cursor** Keys and alter the number with the up and down **Cursor** Keys.

In the screen to the left, the tenth place of the day is being selected. The number can be increased or decreased by 1 with the up/ down **Cursor** Keys. Press the **ENTER** Key to confirm the selection, or press the **ESC** Key to return to the previous screen and cancel the changes.

CAUTION:

If "AUTO" is set for "A Range", either "Power + Harmonics" or "Power only" is selectable at step (1): Select desirable recording item.. To record the items related to power quality, set it to any other proper current ranges

other than "AUTO". Only the settings of wiring and recording are included in the "Quick start guide".

The following should be selected and entered before starting a record. Press the (SET UP) key to show the setting screen.

* Nominal voltage/ frequency, THD for power quality event and filter coefficient (ramp) for Flicker measurement. When the setting of "A Range" is set to other than "AUTO", the settings of "+ Clamp" will be automatically altered to "OFF".

5 Settings

5.1 List of setting items

Settings for measurement condition and data saving are necessary prior to making measurements. Press the SET UP Key to enter into the SET UP mode and do the necessary settings.

Settings consist of the following five categories. Use the

After making the necessary changes, switch screens and exit from the SET UP screen. Confirm that the is displayed in the upper left of the LCD at this time. This means the changes are enabled. If powering

off the instrument without switching screens, the changes you made will be cleared.

Make settings for the items common to each measurement.

Make settings for each measurement mode.

Edit the recorded data or alter the instrument setting.

Measurement Setting

Recording Setting

Save Data

Others

Basic Setting

Configure the environmental setting.

Make settings for recoding.

100V

4ch

8125

COO 0

1,2,3ch

8125

F00 0 4

Nominal V

Clamp

Diagram Setect

Current

SET UP	🗖 👰 -	06/01/2014 15:23:22		
Racic Moas	Roc Save	Others		
Wiring				
Wiring	3P4	Ń		
+Clamp	+1A			
Voltage				
V Range	600V			
VT Ratio	1.00			
Nominal V	100V			
Current	1,2,3ch	4ch		
Clamp	8125	8125		
	E00 0 4	E00 0 4		
Diagram Detect				
F1				

"Basic wiring"

Choose one according to the wiring system to be measured.

Wiring connection

Read the following precautions prior to wiring connection.

- With attention to the measurement category to which the object under test belongs, do not make measurements on a circuit in which the electrical potential exceeds the following values.
- * 300V AC for CAT IV, 600V AC for CAT III, 1000V AC for CAT II
- Use the voltage test leads and clamp sensors dedicated for this instrument.
- Connect the clamp sensors, voltage test leads and power cord to the instrument first, and then connect them to the measured object or the power source.
- When the instrument and the test lead are combined and used together, whichever lower category either of them belongs to will be applied. Confirm that the measured voltage rating of the test lead is not exceeded.
- Do not connect voltage test leads or clamp sensors unless required for measuring the desired parameters.
- Clamp sensors should always be connected on the downstream side of a circuit breaker, which is safer than the upstream side.
- Do not open-circuit the secondary side of a supplementary CT while it is energized because of the high voltage generated at the secondary side terminals.
- Be careful to avoid short-circuiting the power line with the un-insulated part of the voltage test probes during the setting up of the instrument. Do not touch the tip metal part.
- Transformer jaw tips are designed in such a way to avoid short-circuiting. If the circuit under test has exposed conductive parts, extra care should be taken to minimize the possibility of shorting.
- Keep your fingers behind the protective fingerguard and barrier during a measurement. Protective fingerguard and barrier: provides protection against electrical shock and ensuring the minimum required air and creepage distances.
- Never disconnect the voltage test leads from the connectors of the instrument during a measurement (while the instrument is energized).
- Do not touch two lines under test with the metal tips of the test leads.

- To avoid possible electric shock and short-circuit, always turn off the line under test at wiring connection.
- Do not touch the un-insulated tip of voltage test leads.
- Stop using the test lead if the outer jacket is damaged and the inner metal or color jacket is exposed.

Settings of voltage measurement

SET UP				□ -	■ 06/01/2014 16:28:42		
Bas	ic	Meas.	Rec.	Save	Others		
Wiring	Wirin +Cla	ng mn	3P4W +1A				
Voltag	e						
	V Rar	nge	600V				
	VT Ra	atio	1.00				
	Nomir	nal V	100V				
Curren	L .		1,4	, sen	400		
	Clamp)	81	25	8125		
Defau F1	lt	Detect	500	0 4			

"Voltage range"

Choose a desired voltage range.

* For measurements according to IEC61000-4-30 Class S, set the range to "600V".

"VT Ratio"

Set the proper VT ratio when VTs (transformer) are installed in the measured system. The selected VT ratio will be reflected to all the values measured during any voltage measurements.

* This setting belongs to Current measurement setting.

'T/CT*

- With attention to the measurement category to which the object under test belongs, do not make measurements on a circuit in which the electrical potential exceeds the following values.
 - * 300V AC for CAT IV, 600V AC for CAT III, 1000V AC for CAT II
- Connect the Power cord to an outlet. Never connect it to the outlet of AC240V or higher.
- This instrument must be used on the secondary side of VT (transformer) and CT (current transformer).
- Do not open-circuit the secondary side of the supplementary CT while it is energized because of the high voltage generated at the secondary side terminals.

 When a VT or CT is used, the measurement accuracy is not guaranteed due to several factors namely phase characteristics and VT/CT accuracies.

The use of supplementary VT/CT's may be required if the voltage/current values of the circuit under test fall outside the instrument measuring range. In this case the value at the primary side of circuit can be obtained directly by measuring the secondary side with appropriate an VT or CT installed in the line under test as follows.

< Example of single-phase 2-wire (1-system) "1P2W x 1" >

When rating of the secondary side of CT is 5A, use of Clamp sensor 8128/8135 (50A type) and testing at 5A Range is recommended.

In this case, set the actual ratio of VT and CT to be used.

"Nominal voltage"

Set the nominal voltage values applied from the measured object.

Default values

When the blue highlight is located at "Nominal V", you can check a list of the popular values

Settings of current measurement

SET UP		🗖 📴 🕂	06/01/2014 15:23:53
Basi	c Meas.	Rec. Save	Others
V	I Katio	1.00	
		TIMIN	
Current		1,2,3ch	4ch
0	lamp	8125	8125
A	Range	500.0 A	500.0 A
C	T Ratio	1.00	1.00
UL			
0	C Range	1000	mV
Frequence	cy		
N	ominal f	50Hz	
	Setect		
	(F2)		

"Clamp" : Clamp sensors for current measurement

Select the model names of the connected sensors. Types of the current sensors used for measurements should be the same. If an optional sensor is used and set for "**+Clamp**", an exceptional sensor can be set for 4ch. The rated current and the max conductor size are displayed in a pop-up while opening the list of sensor model names.

"Current range"

Choose a desired current range. While "Record" is set at the "Recording Tab" to record the power quality events, "AUTO"* is not selectable. To enable auto-ranging at current range, select "Do not record" for "Event" in the REC Item. Please refer to "**VT/ CT**" (**P. 54**) in this manual for the detailed settings of power quality events.

* Measurements according to IEC61000-4-30 Class S cannot be performed while "AUTO" is selected.

"CT Ratio"

Set the proper CT ratio when CTs (current transformer) are installed in the measured system. The selected CT ratio will be reflected to all the values measured during any current measurements. The details about CT are described in "*VT/CT*" (**P.54**).

Sensor detection

Pressing the F2 key detects and displays the model names of the connected sensors automatically. However, if the connected sensors are not the ones that should be connected for the selected wiring system, or sensor detection fails, an error message will appear and the values entered at "Clamp", "A Range" and "CT Ratio" will be cleared. The details about "Sensor detection" are described in "*Sensor detection*" (**P.44**).

Settings of External input terminal/ reference frequency

SET UP		🗖 🗓 🚽	06/01/2014 15:23:53	
Bas	ic Meas.	Rec. Save	Others	
	VI Katio	1.00		
	Nominal V	100\	/	
Curren	t	1,2,3ch	4ch	
	Clamp	8125	8125	
	A Range	500.0 A	500.0 A	
	(T Ratio	1 00	1 00	
DC				
	DC Range	1000	mV	
Freque	ncy			
	Nominal f	50Hz		
	😵 Detect			

"DC Range"

Select a proper DC range according to the incoming DC voltage signals.

"Frequency"

Choose the nominal frequency of the system to be measured. If it is difficult to specify the voltage frequency, for example, in the event of power interruption, KEW6315 performs measurements based on the preset nominal frequency.

	Selection					
	50Hz/ 60Hz					
	* Default setting is highlighted in gray.					
Move t	ne blue highlight to " Nominal f ".					
Choose	e the frequency. Confirm. Concel.					

5.3 Measurement setting			KEW6315
5.3 Measuremen	nt setting		
Press the SET UP Key.	Change the	e tabs to " Measurem	ient".
	SET UP Basil Measurement	□ 0 - 06/01/2 15:24: Rec. Save Others	014 35
	Measurement	30min.	
	Inspection	10min.	
	Target	100.0kW	
	Harmonics		
	THD calc.	THD-F	
	MAX hold	ON	
	Edit allo	wable range.	
	Power quality	Γ0.	

Settings of demand measurement

"Measurement cycle"

Disable the demand measurement or set the demand measurement cycle in the preset recording period. When a demand measurement start, the measured demand values will be recorded at the selected measurement cycle. The cycle time should be selected from the following.

Selection
Not be used./ 10 min/ 15 min/ 30 min
t Defende entire sie biebliebted is weet

* Default setting is highlighted in gray.

The selected demand measurement cycle has an influence on the selection of the measurement intervals. Since the measurement interval cannot be set to a longer time than the demand interval, the preset measurement interval may be changed automatically according to the selected demand measurement cycle. Selectable measurement intervals: 1sec/ 2sec/ 5sec/ 10sec/ 15sec/ 20sec/ 30sec/ 1 min/ 2 min/ 5 min/ 10 min/ 15 min/ 30 min.

"Target value"

Set the demand target value.

SET UP		- 🗖	06/01/2014 16:32:58
Basic Mea	asurement	Rec. Save	Others
Demand			
Me	asurement	0.001m \sim	999.9T
In	spection	Ť	A
Ta	rget	100.0	GW
Harmonics		T	₹
TH	D calc.	TI D-	F
MA	κ ποια	IN .	
	Edit al	lowable an	ge.
Powe qua	lity		. []
VA	+.0 .00	.00. +.0	
(F1)	F2	F3	

"Inspection cycle"

The buzzer sounds when the predicted value exceeds the target value within the selected inspection cycle. The inspection cycle should be shorter than the demand measurement cycle. The relations between the measurement and inspection cycles are as follows.

Measurement cycle	Inspection cycle
10 min/ 15 min	1 min/ 2 min/ 5 min
30 min	1 min/ 2 min/ 5 min/ 10 min/ 15 min

* Default value is highlighted in gray.

Outline of demand measurement concept

In such a contract the electricity tariff rates (i.e. for kWhr units) are based upon the consumer's maximum power demand. The maximum demand is the maximum of average powers recorded over a 30min interval. Assuming the max target demand to be 500kW, the average power during Measurement cycle 1 is fine, but the power consumption for the first 15 min of Measurement cycle 2 is 600kW. In such a case, the average power during Measurement cycle can be maintained at 500kW (same as Measurement cycle 1) by reducing the power of the last 15 min to 400kW. If the power consumption during the first half of cycle 2 is 1000kW and the last 15min is 0kW, the average power is the same: 500kW. While "Inspection cycle" is set to "15 min", the buzzer sounds after 15 min at the start of Measurement cycle 2.

Settings for Harmonic analysis

SET UP					-	06/01/2	2014 :16
Basic	Meas	urement	Rec.	Sa	ve	Other	5
Demand							
	Meas	surement		30m	in.		
	Insp	pection		10m	in.		
	Tarr	tot		100	ULM		
Harmon	ics						
	THD	calc.		TH	D-F		
	MAX	hold		0	N		
		Edit al	lowabl	le ra	inge		
rower o	Juari	ιτγ					1
	ll. cal			_	T 0.		

"THD calculation"

THD stands for "Total Harmonic Distortion". Select "THD-F" to calculate the total harmonics distortion based on the basic wave and "THD-R" to do the calculation based on all rms values.

"Edit allowable range"

Set the EMC allowable range (rate of content) for harmonics per order. The edited ranges are displayed as bar graph on the graph of harmonics.

Industrial environment Class 3. Press the (F3) key (Default) to restore the edited values to default. Press the (F2) key (A/V [%]) to switch current and voltage. The (F1) key is to return to

the Measurement setting screen.

SET	UP						_	06/0	1/2014
Ha	rmon	ics	allo	wabl	e ra	inge :	VI	rate	[%]
1:	2:	3:	4:	5:	6:	7:	8:	9:	10:
100.0	3.0	6.0	1.5	8.0	1.0	7.0	1.0	2.5	1.0
11:	12:	13:	14:	15:	16:	17:	18:	19:	20:
5.0	1.0	4.5	1.0	2.0	1.0	4.0	1.0	3.5	1.0
21:	22:	23:	24:	25:	26:	27:	28:	29:	30:
1.8	1.0	2.8	1.0	2.6	1.0	1.0	1.0	2.1	1.0
31:	32:	33:	34:	35:	36:	37:	38:	39:	40:
2.0	1.0	1.0	1.0	1.7	1.0	1.6	1.0	1.0	1.0
41:	42:	43:	44:	45:	46:	47:	48:	49:	50:
		1.7			1		0	1.1	1.0
B	ACK		A[%]	De	faul	t		
$\overline{}$	Ű				C		<u> </u>		
		'ונ'				F3	リ		

Threshold setting for Power quality (Event)

SET UP	□ -			
Basic Measurement	Rec. Save Others			
MAX hold	ON			
Edit al	lowable range			
Power quality				
Hysteresis	5%			
Transient	300 Vpeak			
SWELL	110%(110.0 V)			
DIP	90%(90.0 V)			
INT	OFF			
InrushCurren	tl OFF			
OFF				
(F1)				

Press the F1 (OFF/ ON) to disable or enable the "threshold value" entry. If "OFF" is selected, the item will not be recorded even the threshold value is set for it. The threshold value used during the previous measurement is displayed by pressing the (ON) key.

Caution:

Threshold values for "Swell", "Dip" and "INT" are the percentage of the nominal voltage. So when the nominal voltage is changed, threshold voltage will be altered accordingly. For "Transient", if the nominal voltage is changed, the initial value will be automatically set to "300%", which is three times the new nominal voltage (peak voltage). The threshold value for "Inrush current" is the percentage of the Current Range, therefore, the value will be altered if the setting of the current range is changed.

"Hysteresis"

Set a desired hysteresis in percentage to disable the event detection for the specific area. Setting a proper hysteresis will be helpful to prevent unnecessary detections of events which are caused by voltage or current fluctuations around the threshold values.

Selection		
1 - 10% against the nominal voltage (5%)		
* Default value is highlighted in gray.		

Move the blue highlight to "Hysteresis".	ENTER Show the value entry window.*
	* A pop-up appears and show the effective range.
Set the hysteresis [%]. \rightarrow ENTER Co	onfirm. Esc Cancel.

"Transient": Over-voltage (Impulse)

Set an instantaneous voltage value as a threshold for the transient event. The following selection range varies depending on the selected VT ratio.

Example of Transient detection:

The details are described in "Displaying recorded events" (P. 116).

Threshold value (voltage value) Voltage waveform

"SWELL": Instantaneous voltage rise

Set the threshold value (rms voltage in one cycle) for swell in percentage of the nominal voltage. The following selection range varies depending on the selected VT ratio. The preset hysteresis has an effect on this threshold value.

"Inrush Current": Instantaneous current rise

Set the threshold value (rms current in one cycle) for inrush current in percentage of the max value of the Current range. The following selection range varies depending on the selected CT ratio. The preset hysteresis has an effect on this threshold value.

"DIP": Instantaneous voltage drop

Set the threshold value (rms voltage in one cycle) for dip in percentage of the nominal voltage. The following selection range varies depending on the selected VT ratio. The preset hysteresis has an effect on this threshold value.

"INT": A short period of power interruption

Set the threshold value (rms voltage in one cycle) for INT in percentage of the nominal voltage. The following selection range varies depending the preset VT ratio. The preset hysteresis has an effect on this threshold value. If rms voltages, 10V or less, are used for event detections, ensure that the Int event detection is enabled. Otherwise, events will not be detected properly.

SET UP		2014/02/24		
Basic	Measurement	Rec. Save Others		
	11930010313	J*0		
	Transient	600 Vpeak		
	SWELL	110%(220.0 V)		
	DIP	90%(180.0 V)		
	INT	OFF		
	TaruchCurrent			
Flicker				
	Filter	230V		
Lapacitance calculation				
-	Target PF	1.000		

"Filter coefficient"

Set a proper filter coefficient according to the nominal voltage for accurate flicker measurements. Select the values of nominal voltage, nominal frequency and filter coefficient values appropriate to the actual measured object. If possible, harmonize the filter coefficient and the nominal voltage.

Target power factor for Capacitance calculation

SET UP		🗖 💷 201 10	4/02/24
Basic	Measurement	Rec. Save Oth	ers
	Transient	600 Vpeak	
	SWELL 110%(220.0 V))
	DIP 90%(180.0 V))
INT OFF		OFF	
	InrushCurrent	t OFF	
Flicke	r Filter	230V	
Capacitance calculation			
Target PF		1.000	

"Target power factor"

Set a target power factor for capacitance calculation. The power factor gets influenced badly if inductive loads, such as motors, are connected to the power supply because current phases lag behind the voltage phases in this case. Usually, phase advanced capacitors are installed in high-voltage-receiving installations, to reduce such influences. Improving the power factor may cut down electricity tariffs if the customer is on low-, high- or industrial power construction.

Selection	
0.5 – 1 (1.000)	

* Default setting is highlighted in gray.

5.4 Recording setting			KEW6315
5.4 Recording se	etting		
Press the SET UP Key.	→ Change the	tabs to " Recording ".	
	SET UP Basic Meas, Recordi	ng Save Others	
	REC Items Power	Record	
	Harmonics Event	Record Record	
	REC method	30min.	
	Start	Manual	

Settings for recording items

SET UP		□ 06/01/2014 15:26:21
Basic Meas.	Recordin	a Save Others
REC Items		
Powe	r	Record
Harm	onics	Record
Even	t	Record
ket method		
Inte	rval	30min.
Star	t	Manual

The possible recording time on SD cards or the internal memory varies depending on the number of the recorded items and the preset intervals. Select "Do not record" for the items which are not necessary to be recorded to secure a longer recording time. The details are described in "*Possible recording time*"(**P. 76**).

"Power"

The blue highlight cannot locate on this area. This is just to make sure all the items related to electric power are always recorded.

"Harmonics"

Select "Record" or "Do not record" the harmonics of voltage, current and power.

* Default setting is highlighted in gray.

"Event"

Select "Record" or "Do not record" the detailed data when power quality events occur. The "Do not record" is not selectable when "AUTO" is set for "A Range". To select "Record", set it to any other proper current ranges other than "AUTO".

* Measurements complied with IEC61000-4-30 Class S cannot be performed with "AUTO" setting.

	Selection	
	Record/ Do not record	
	* Default setting is highlighted in gray.	
Move t	the blue highlight to "Harmonics"/ "Event"> (INTER) Show the pull-down menu	-
Select	"Record" or "Do not record". 🔶 (ENTER) Confirm. (ESC) Cancel.	

Saved items

The following data measured on each CH will be saved according to the selected recording method. Saved items are depending on the selected recording method and wiring system.

750 (1)			Meas./ Rec. setting			
REC file	REC item	Power	+Harmonics	+Event		
	RMS voltage (line/ phase)					
	RMS current					
	Active power					
	Reactive power					
	Apparent power					
	Power factor					
	Frequency					
	Neutral current(3P4W)					
	V/ A phase angle (1st order)					
	Analog input voltage, 1CH, 2CH					
Power	V/A unbalance ratio	•	•	•		
measurement	1-min Voltage flicker	•	•	•		
measurement	Short-term V Flicker (Pst)					
	Long-term V Flicker (Plt)					
	Capacitance calculation					
	Active power energy (consumption/ regenerating)					
	Reactive power (consumption) lagging/ leading					
	Apparent power energy (consumption/ regenerating)					
	Reactive power (regenerating) lagging/ leading					
	Demand (W/VA)					
	Target demand (W/VA)					
	Total harmonic distortion of V(F/R)					
	Total harmonic distortion of A(F/R)					
	Harmonic V/ A(1-50th order)					
Harmonics	V/ A phase angle (1-50th order)		•			
measurement	V/ A phase difference (1-50th order)		•			
	Harmonic power (1-50th order)					
V/ A Change	RMS voltage per half-cycle			•		
	RMS current per half-cycle			-		
	Event detected date & time			_		
Event type	Event type			•		
	Measured values at event detection					
Waveform	V/A waveform			•		

Recording method

SET UP		06/01/2014 16:37:20
Basic Mea	s. Recordin	ng Save Others
REC Items		
Po	wer	Record
Ha	rmonics	Record
Г	L	Decoud
REC metho	d	
In	terval	30min.
Sta	art	Manual
		Endless rec.
	Ti	ime period rec.

"Interval"

Set the interval to record the measured data on the SD or internal memory. Seventeen different intervals are available, but it cannot be set to a longer time than the demand measurement cycle. The preset recording interval may be changed automatically according to the selected demand measurement cycle. Please refer to "*Settings of demand measurement*" (**P. 59**) in this manual.

Selection
1 sec/ 2 sec/ 5 sec/ 10 sec/ 15 sec/ 20 sec/ 30 sec/
1 min/ 2 min/ 5 min/ 10 min/ 15 min/ 20 min/ 30 min/
1 hour/ 2 hours/ 150,180 cycles (approx. 3 sec)

* Default setting is highlighted in gray.

* The intervals: 150, 180 cycles (approx. 3 sec) are the ones defined in IEC61000-4-30. Data will be collected in 150 cycles at 50Hz (nominal frequency) and in 180 cycles at 60Hz (nominal frequency).

"Start"

Select the method to start recording.

Key.

"Constant recording"

Start/ stop the recording with

Measured data will be recorded continuously at the preset interval during the specified start/ stop time and date. Please refer to "(8)/ (9) Setting for recording method" (P. 45).

	Selection
Start time and date	Day/ Month/ Year Hour:Minute (00/00/0000 00:00)
Stop time and date	Day/ Month/ Year Hour:Minute (00/00/0000 00:00)

"Time period recording"

Measured data will be recorded at the preset interval for the specified time period of the selected period. When the specified time comes, a recording will start and end automatically; such a recording cycle will be repeated everyday during the specified period. Please refer to "(8)/ (9) Setting for recording method" (P. 45).

		Selection
REC Period	Start-Stop	Day/ Month/ Year (DD/ MM/ YYYY) - Day/ Month/ Year (DD/ MM/ YYYY)
REC Time	Start-Stop	Hour:Minute (hh:mm) - Hour:Minute(hh:mm)

Possible recording time

When the 2GB of SD is used:

	REC item			REC	C item
Interval	Power	+Harmonics	Interval	Power	+Harmonics
1sec	13days	3days	1min	1-year or more	3months
2sec	15days	3days	2min	2-year or more	6months
5sec	38days	7days	5min	6-year or more	1-year or more
10sec	2.5months	15days	10min		2-year or more
15sec	3.5months	23days	15min		3-year or more
20sec	5months	1month	20min	10	5-year or more
30sec	7.5months	1.5months	30min	10-year or more	7-year or more
			1hour		10
			2hours		TU-year or more
			150/180-cycle	23days	4days

* Data of power quality events are not considered to estimate the possible recording time. The max possible recording time will be shortened by recording such events. The max file size per recording is 1GB.

* Please ensure to use the SD cards provided with this instrument or as optional parts.

5.5 Other settings				KEW6315
5.5 Other settings	; ;			
Press the SET UP Key.	Change the	e tabs to " Others ".		
	SET UP Basic Meas. Rec. Environment Language Date format CH Color KEW6315 setting Time ID Number Buzzer Bluetooth	English DD/MM/YYYY VN ch1 ch2 ch3 ch4 06/01/2014 15:26 00-001 ON OFF Dischle oute off	A14	
L				

Settings for system environment

SET UP		□ 🗓 🕊 06/01/201 15:26:48		
Basic	Meas Rec	Save Others		
Enviro	nment			
	Language	English		
	Date format	DD/MM/YYYY		
	CH Color	VN ch1 ch2 ch3 ch4		
KEWODI	o setting			
	Time	06/01/2014 15:26		
	TD N I			
	ID Number	00-001		
	ID Number Buzzer	00-001 ON		
	ID Number Buzzer Bluetooth	00-001 ON OFF		
	ID Number Buzzer Bluetooth	00-001 ON OFF		

"Language"

Select the language to be displayed.

	Selection	
	Japanese/ English	
	* Default setting is highlighted in gray. Changes made by user will remain after system re	eset.
Move th	e blue highlight to "Language". \rightarrow ENTER Show the pull-down menu. \rightarrow Selection Selection Selection (Selection (Selecti	ect a
desired lang	guage. → Confirm. Cancel.	

"Date format"

Select a desired date display format. The selected date format will be reflected to the date display on the screen and on each setting window.

	Selection	
	YYYY/ MM/ DD / MM/ DD/ YYYY / DD/ MM/ YYYY	
* D	efault setting is highlighted in gray. Changes made by user will not be cleared after syste	m reset.
Move th	e blue highlight to " Date format ".	
Select a	desired date format. → ENTER Confirm. ESC Cancel.	

"CH color"

Specify the colors for voltage and current per CH. The colors will be reflected into the characters on item label and lines on the graph and wiring diagram.

* Default color setting is: VN: Yellow/ 1CH: Red/ 2CH: White/ 3CH: Blue/ 4CH: Green. Changes done by user will not be restored to default even after the system is reset.

KEW6315 Setting

SET UP					************************************	37:57
Basic	Meas.	Rec.		0	thers	
	Date	i ur illa c	UL	// 19121/		
	<u>сп с</u> ~	lor	MM C	h1 ch'	ch7 c	
KEW631	5 sett	ing				
	Time	-	06/01	/201	4 16:3	37
	ID Nu	mber		00-0	01	
	Buzze	r		ON		
	Bluet	ooth		OFI	-	
	Power		Disab	ole a	uto-of	ff
	Backl	ight	Power	off	in 5 m	in.
		Sys	stem re	set		

"Time"

Adjust and set the internal system clock.

Selection
dd/ mm/ yyyy hh:mm

* The selected date format has an effect on this setting.

"ID Number"

Assign an ID number for the unit. Assigning ID numbers will be helpful to use multiple units at the same time or measuring multiple systems with one unit periodically and analyze the recorded data.

"Buzzer"

Keypad sounds can be muted. The warning buzzer for demand judgment or low battery voltage sounds even "OFF" is selected.

"Power"

Select to enable or disable the auto-power-off function. This setting is for the case KEW6315 operates with an AC power supply. Auto-power-off activates in 5 min after the last operation while KEW6315 is operating with batteries.

	For:	Selection		
	AC Power	Power off in 5 min. / Disable auto-off		
	Battery	Power off in 5 min.		
* Default setting is highlighted in gray.				
Move the blue highlight to " Power ". \rightarrow Enter Show the pull-down menu. \rightarrow				
Select either turning on/ off the auto-off function. $\rightarrow \underbrace{\text{ENTER}}$ Confirm. $\underbrace{\text{ESC}}$ Cancel.				

"Backlight"

This setting can turn off the backlight automatically when the prescribed time passes after the last key operation. The backlight will be turned off in 2 min after the last operation while KEW6315 is operating with batteries.

For:	Selection
AC Power	Power off in 5 min. / Disable auto-off
Battery	Power off in 2 min.

* Default setting is highlighted in gray.

"System reset"

Restore all the settings to default except for "Language", "Date format", "CH Color" and "Time".

KEW6315		5.6 Saved data
5.6 Saved data		
Press the SET UP Key.	→ → Change the tabs to "Saved data".	
	SET UP Basic Meas. Rec. Saved data REC data Delete data. Format KEW6315 setting Save settings. Read settings.	

Save the "Image: Measurement data, "Image: Print screen" and "Image: Setting data" on the "Image: SD card or in the "Image: The screen" and "Image: Setting data" on the "Image: SD card or in the "Image: The screen" and "Image: Streen" and "Image: Streen and Streen

To delete, transfer or format the recorded data

Select a desired operation.
Confirm.

"Delete data"

Show the list of the recorded data, and then select unnecessary data.

Icons on the screen means: 📴: SD card, 🕮: Internal memory, 🔤 Measured data, 🗟: Print screen,

Data are not listed in time sequence. The recorded date and time are displayed to the right of file name. As for the data which are previously transferred from the internal memory to an SD card, the displayed time means when the data were transferred. The scroll bar is displayed when the list of the recorded data exceeds the display area.

A check mark " 🗹 " will be put in the checkbox for the selected data. Multiple data can be selected at once.

"Delete"

Press the F2 Key and select "Yes" on the confirmation message to delete the data.

"Internal"/ "SD card"

Pressing the F3 Key can switch between "Internal memory" and "SD Card" and the corresponding icon will be displayed in the upper left of the screen. Checked boxes will be cleared if the screens are switched before deleting the data.

"Space"

Storage media information can be checked with the Key. Press the Key to close the

information window.

SD card Capacity:]
Total size	1.86	GB	18
🗕 📕 Free size	1.86	GB	14
Possible recording	time:		28
Power only	48D	2H	10
+Harmonics	80	9H	50
			22
			56
			20
			10
	TER]:CLO	SE	12

S Internal memory Capacity: Total size 3.44 MB Free size 1.88 MB Possible recording time:	SET	UP 🗖 🕊 06/0 16:	1/2014 40:17
Power only 56M 35S +Harmonics 9M 50S Max number of saved data: Measurement data 0/3 Settings/Print screen 6/8 [ENTER]:CLOSE		Internal memory Capacity: Total size 3.44 MB Free size 1.88 MB Possible recording time: Power only 56M 35S +Harmonics 9M 50S Max number of saved data: Measurement data 0/3 Settings/Print screen 6/8 [ENTER]:CLOSE	56 37 19 38 31

Displayed items		Selection
Ornerity	Total size	Total memory capacity
Capacity	Free size	Capacity of free space
	Power only	Estimated possible recording time if the parameters to be
Possible recording	T Ower Only	recorded are limited to power-related ones only.
time	Dowort Harmonics	Estimated possible recording time if the parameters to be
	Fower+Harmonics	recorded are power-related ones and harmonics.
Max number of	Maaguramant data	Number of measurement data files saved in the memory
saved data		* Max number of files: 3
* Internal memory	Settings/	Number of KEW6315 setting and print screen data files
only	Print screen	* Max number of files: 8

"BACK"

To return to the "Saved data" screen, press the F1 Key.

"Transfer data"

Select the data you want to transfer from the "Select the data you want to transfer from the "Select the data you want to transfer from the "Select the data, "Select the SD card "Select the SD card "Select the data which can be transferred are: "Select date and time are displayed to the right of file name. Data are not listed in time sequence. The recorded date and time are displayed to the right of file name. As for the data which are previously transferred from the internal memory to an SD card, the displayed time means when the data were transferred. The scroll bar is displayed when the list of the recorded data exceeds the display area.

SET UP
Data location — 💭 elect data you want to transfer.
65/01/2014 11:40:5 Scroll bar
□ I M0002 05/01/2014 11:40:1
Checkbox
□ S ME025.BMP 06/01/2014 16:28:0
General Supmond PRE 06/01/2014 16:41:3
□ ⊕ SUPM0002.PRE 06/01/2014 16:41:2
□ @ SUPM0001.PRE 06/01/2014 16:41:2
BACK Transfer SD card Space
F1 F2 F3 F4
Select the data you want to transfer. $\rightarrow \stackrel{(\text{ENTER})}{\longrightarrow}$ Confirm. $\rightarrow \stackrel{(\text{F2})}{\longrightarrow}$ A confirmation message will
(THE DECEMBER OF THE DECEMBERO
appear. 🔿 🖤 Select "Yes" or "No". 🔷 💭 Selected data will be transferred.
A check mark " 🗹 " will be put in the checkbox for the selected data. Multiple data can be selected at once.
"Transfer"
Press the (Transfer) Key and select "Yes" on the confirmation message to transfer the selected data.
"SD cord"
SD calu
To check the data on the SD card, press the (SD card) Key. Pressing the Key again returns
to the list of data saved in the internal memory. Checked boxes will be cleared if the screens are switched
before transferring the data.
"Space"
FATER (FITER)
Storage media information can be checked with the VI Key. Press the VI Key to close the
information window. Please refer to "Space" (P. 84) for further details.

"BACK"

To return to the "Saved data" screen, press the

1))	12
_	ש	Ke

"Format"

Format the " 🖾 ": SD card or " 💭 ": Internal memory. Data are not listed in time sequence. The recorded date and time are displayed to the right of file name. As for the data which are previously transferred from the internal memory to an SD card, the displayed time means when the data were transferred. The scroll bar is displayed when the list of the recorded data exceeds the display area.

Type of the saved data

Data file handling

The file name will be assigned automatically. File no, is kept and saved, even after powering off the instrument, until the system is reset. The file number will increase until it exceeds the max file number. If a file with the same file name already exists, the files in the data folder will be saved as another name with a different file number. The file number will be automatically increased by 1. However, "Print screen" and "Setting" files will be overwritten in such a case. When the file number starts from "0" or one same SD is used for multiple instruments, extra cautions should be paid so that necessary files will not be overwritten. When all the file numbers are used for each type of data, the files on the data folder will be overwritten.

If files are deleted or the name of folder or file are changed on a PC, editing on the instrument or data analysis with special software cannot be performed. Please do not change the name of folder or file.

"Print screen"

"KEW6315 Setting"

Press the SET UP key and move to "Saved data" tab, and then select "Save Settings".

"Data folder"

New folder will be created per measurement to save the interval and power quality data.

Folder name:	/ KEW / S:SD M:Inte	S Dest. coo card ernal mer	le nory	0 Da (000)	000 ta No. 0-9999)	
"Interval data"						
KEW6315 setting	File name	SUP	S		0000	.KEW
Measurement setting		INI	S		0000	.KEW
Power measurement		INP	S		0000	.KEW
Harmonics measurement		INH	S		0000	.KEW
						-
		De S:SD ca M:Interr	est. code ard nal memory		Data No. (0000-9999)	
"Power quality data"						
Event typ	e File nam	ne EVT	S		0000	.KEW
Waveforr	n	WAV	S		0000	.KEW
V/ A chang	е	VAL	S		0000	.KEW
		E S:SD M:Inte	Dest. code card ernal memory		Data No. (0000-9999)	

KEW6315 settings and Data loading

SET UP			🗖 🗖 🚽	■ 06/01/2014 16:43:58
Basic M	eas.	Rec.	Saved data	Others
REC data	a			
_		Del	ete data.	
_		Trar	sfer data.	
			Format	
KEW6315	sett:	ing]
		Save	<u>settings.</u>	
		Read	settings.]

Confirm.

"Save settings"

Save the " ⁽⁽⁾": Setting data on the " ⁽⁾": SD card or in the " ⁽⁾": internal memory. Data are not listed in time sequence. The recorded date and time are displayed to the right of file name. As for the data which are previously transferred from the internal memory to an SD card, the displayed time means when the data were transferred. The scroll bar is displayed when the list of the recorded data exceeds the display area.

"Save"

Press the F2 Key and select "Yes" on the confirmation message to save the data on the SD card or in the internal memory.

"Internal"/ "SD card"

Pressing the (F_3) Key can switch between "Internal memory" and "SD Card" and the corresponding icon will be displayed in the upper left of the screen.

"Space"

KEW6315

Storage media information can be checked with the

F4 Key. Press the Key to close the

information window. Please refer to "Space" (P. 84) for further details.

"BACK"

To return to the "Saved data" screen, press the F1 Key.

The following settings for KEW6315 can be saved.

Basic setting

Setting item						
Wiring						
Voltage range						
VT ratio						
Nominal voltage						
Clamp/ Current range						
CT ratio						
DC range						
Frequency						

Other settings

Setting item						
Environment	Date format					
KEW6315	ID number					
setting Buzzer						

Measurement setting

	Setting item						
	Measurement cycle						
Demand	Inspection cycle						
	Target						
	THD(total harmonic distortion) calc.						
Harmonics	Allowable range						
	MAX HOLD						
	Threshold for Hysteresis						
	Threshold for Transient						
Power	Threshold for Swell						
quality	Threshold for Dip						
	Threshold for INT						
	Threshold for Inrush current						
Flicker	Filter coefficient (Ramp)						
Capacitance							
calculation							

Recording setting

	Setting item				
Recording	Harmonics				
item	Power quality (event)				
Descending was the st	Interval	Interval			
Recording method	Start				
O an atom to a so a	REC Start				
Constant meas.	REC End				
	Rec. period Start - El	nd			
lime period rec.	Time period Start - Ei	nd			

"Read settings"

Read the " * : Setting data from the " * : SD card or from the " * : internal memory. Data are not listed in time sequence. The recorded date and time are displayed to the right of file name. As for the data which are previously transferred from the internal memory to an SD card, the displayed time means when the data were transferred. The scroll bar is displayed when the list of the recorded data exceeds the display area.

The scroll bar is displayed when the list of the recorded data exceeds the display area. A check mark " 🔍 " will be put in the checkbox for the selected data.

"Read"

Press the F2 (Transfer) Key and select "Yes" on the confirmation message to transfer the selected data.

"Internal"/ "SD card"

Pressing the *F3* Key can switch between "Internal memory" and "SD Card" and the corresponding icon will be displayed in the upper left of the screen.

"Space"

"BACK"

To return to the "Saved data" screen, press the

Key.

Multiple measured values can be displayed on one screen. The displayed items can be changed by pressing the corresponding keys.

	Symbol displayed on the LCD								
V*1	Phase voltage VL ^{*1}		Line voltage	А	Current				
Р	Active + consumption power - regenerating	Q	Reactive + Lagging power - leading	S	Apparent power				
PF	Power + Lagging factor - leading	f	Frequency						
DC1	Analog input Voltage at 1ch	DC2	Analog input Voltage at 2ch						
An* ²	Neutral current	PA ^{*3}	V/A Phase + Lagging difference _ leading	C* ³	Capacitance calculation				

^{*1} W screen: Displays of V and VL can be "customized" when "3P4W" is selected.

^{*2} W screen: "An" is displayed only when "3P4W" is selected.

^{*3} W screen: Displays of PA and C can be "customized" with the (customize) Key. Line voltages are converted into phase voltages to determine currents and phase angles for "PA" of 3P3W3A.

e.g.) Instantaneous values measured under 1P3W-2 (2 systems)

"Switching the displayed systems"

Press the key and switch the displayed systems. Items displayed in a screen depend on the selected wiring configuration and the number of systems. The dotted lines represent the space of each display area.

1P2W-1 to -4 (Single phase, 2-wire, 1 - 4 systems)

1-system 🔶	2-system	3-system	4-system
Measured values on 1ch (V1/A1)	Measured values on 1ch (V1/A2)	Measured values on 1ch (V1/A3)	Measured values on 1ch (V1/A4)
Total values	• • • • • • • • • • • • • • • • • • •		

1P3W-1, -2 (Single phase, 3-wire, 1 or 2 systems)

3P3W-1, -2 (Three-phase, 3-wire, Blondel's theorem, 1 or 2 systems)

3P3W3A (Three-phase 3-wire)

Measured	Measured	Measured				
values on	values on	values on				
1ch	2ch	3ch				
(V12/A1)	(V23/A2)	(V31/A3)				
Sum of 1, 2 and 3ch						

3P4W (Three-phase 4-wire)

"Switching the type of displayed values"

The displayed values can be switched between Inst, Avg, Max and Min values with *key*. If the selected interval is "1 sec", Inst, Avg, Max and Min values will be the same since the display update is also "1 sec".

"Wh" Integration value

Press the (Wh) key and switch the screens to view integration values. Please refer to **"6.2 Integration value [Wh]**" (**P. 100**) in this manual.

"Zoom"

Four or eight measured values can be zoomed and displayed on one screen by pressing the (Zoom) key. Please refer to "*Zoom display*" (**P. 96**) in this manual.

"Trend graph"

Press the (Trend) key to show the trend graphs. The displayed time area is from present to the past 60 min. Please refer to "*Displaying Trend graph*" (**P. 97**) in this manual.

"Customize"

Press the

F4

 $\mathscr Y$ (Customize) key to switch the displayed items and change the display positions.

Please refer to "Changing displayed items and display position" (P. 99) in this manual.

Zoom display

Example: 8-split screen

Select 4 or 8 values and display the values on one screen. The displayed text will be enlarged so it is easy to see.

"Displayed items"

Select the items to be displayed in each column. Then, the selectable items will be displayed to the right.

Displaying Trend graph

"Type of value"

Any of the following values can be displayed in each column.

Inst: Instantaneous value, or AVG: Average value, MAX: Maximum value or MIN: Minimum value within the selected interval.

If the selected interval is "1 sec", Inst, Avg, Max and Min values will be the same since the display update is also "1 sec".

Displaying Trend graph

In the following example, active powers per ch for 1P3W-2 (Single-phase 3-wire, 2-system) are displayed on the graph.

Changes of each measured values can be displayed on the graph.

W/Wh - 06/01/2014 P1 1 P1 2 1.00 1.06 1.00 1.06kW VI A Q S PF f DC 60sec Wh Σ List F2 F3

The following example shows 1P3W-2 (Single-phase 3-wire, 2-system).

"Change the items displayed on Trend graph"

Press the *key* and change the items displayed on the trend graph.

"Σ/CH"

Press the (Σ/CH) key to switch the graphs: one is to display the sum and total values per system and another is to display the values per ch. The selection of " Σ " or "CH" will be effective for all the trend graphs. When " Σ " is selected, while A: rms current values is selected for 3P4W, An: neutral current values will be displayed on the trend graph.

"List display"

Press the F3 (List) to show all the values on a list.

The displayed items can be changed to any desired ones.

When opening the "Change the items" window, presently displayed items are displayed in two rows. The presently displayed items are displayed on the left, and the items to be displayed after the change are displayed in blue on the right. Displayed positions are basically separated into two large categories: one is for voltage/ current and another is for power/ capacitance calc.. For the details about the symbols displayed on the screen, please refer to "*List display of the measured values*" (**P. 93**).

e.g.) 1P3W-2 (Single-phase Three-wire, 2-system)

	W/Wh			-€	06/01/2014 16:57:14	
Elapsed time	Elapse	d time	00000:00	:05		
	Active	WP+ :	249.887	Wh		
	Active	WP- :	0.000	Wh		
	Annarent	WS+ :	250.837	VAh	12Σ	∑: Total amount
	Apparent	WS- :	0.000	VAh	Σ	∑:sum per system
	Peactive	WQi+:	0.000	var	1ch 2ch	
	Reactive	WQc+:	-11.286	var		
	DEMAND					

Power used in the certain period is displayed as integral power consumption. Integral power consumption is used to calculate electricity tariffs or to control the power consumption.

Symbols displayed on the screen											
WP	Active power	+	consumption	WQ	Reactive power	+	lagging	ws	Apparent power	+	consumption
	energy	-	regenerating		energy	-	leading		energy	-	regenerating

e.g.) 1P3W-2 (Single-phase Three-wire, 2-system)

W/Wh				-	06/01/2014 16:57:14	
Elapsed	time	9	00000:00:	05		
Activo	WP+	:	249.887	Wh		
ACCIVE	WP-	:	0.000	Wh		
Apparant	WS+	;	250.837	VAh	12Σ	
Apparent	WS-	:	0.000	VAh	Σ	
Peactive	WQi+	;	0.000	var	1ch 2ch	
Reactive	WQc+	1	-11.286	var	2011	
DEMAND						
F1						

"Change the displayed systems"

Press the Key to switch the displayed systems. Please refer to "*Setting of wiring system*" (**P. 49**) in this manual.

"Change the displayed chs"

Press the V Key to switch the displayed channels. Please refer to "**Setting of wiring system**" on

(P. 49) in this manual.

"Demand"

Press the (Demand) Key to display the screen for demand value. Please refer to "**6.3 Demand**" (**P. 102**) in this manual.

Showing the measured values

Move the blue highlight to "Meas.".

W/Wh	B	-	06/01/2014 16:57:40	
Time left	00:29:55			
DEM Target	100.0	k₩		
DEM Guess	179.9	kW	Meas.	
DEM Present	0.499	k₩		
DEM Max	0.499	kW		
	06/01/2014 16:42:23			
F1				

The demand is the average powers recorded over a certain period. When the estimated value exceeds the target value during demand measurements, the warning buzzer sounds at the inspection cycles.

Items displayed on the LCD			
Remaining time (time left)	Demand interval is counted down.		
DEM Target	Demand target value.		
DEM Guess	Predicted demand value (average power) when preset demand interval elapses under present load. (Present (Present value) x interval) (Elapsed time) * Integration and calculations are done as time elapses.		
DEM Present	Demand value (average power) within a demand interval. <u>"WP+ x 1 hour"</u> * Integration and calculations are done as time elapses.		
DEM Max	Max demand recorded during a measuring period is displayed. Displayed value will be		
Recorded date	refreshed if any higher demand is detected.		

Instantaneous value "W"

Press the (W) Key to show instantaneous values on the screen. Please refer to **6.1**

Instantaneous value "W"" (P. 92) in this manual for further details.

Shifts in specific period

Items displayed on the LCD			
Remaining time (time left)	Demand interval is counted down.		
DEM P	Percentage of the present value against the target value. Present value is displayed.		
DEM G	Percentage of the predicted value against the target value. Predicted value Target value is displayed.		

Demand change

Press the Key to move the cursor and to scroll the graph to right and left. The white bar shows the percentage of hidden pages and the dark orange bar shows the percentage of the present displayed page.

Start of demand/ Rec. start date and time is displayed when the graph exceeds the display area.

The circle (solid line) represents the max values at V and A Ranges, and the line length represents rms voltage and current values. The angle between the lines represents phase relation with reference to V1. For 3P3W3A/3P4W, unbalance ratio is also displayed. While the measured voltages and currents are balanced, the following vectors will be displayed.

e.g.) Vector of 3P4W:

"V x desired magnification"

F1

F2

: toggle the line lengths of voltage vector.

"A x desired magnification"

: toggle the line lengths of current vector.

1 + 2 + 5 + 10 *time(s)

"Diagram"

Press the (Diagram) Key to show the wiring diagram for the selected wiring configuration. Please refer to "*Wiring diagram*" (**P. 50**) in this manual for further details.

"Check"

Press the (Check) Key to check the wiring connections and show the result. * NG result may be given, even if the wiring is correct, at the measurement site under bad power factors. Please refer to "*Wiring check*" (**P. 43**) in this manual for further details.
Press the Key.

e.g.) Waveform of 1P3W-2 (Single-phase 3-wire, 2-system):

Voltage and current waveforms are displayed: for 10 cycles max. at 50Hz, for 12 cycles max. at 60Hz. When changing the screens for "Waveform", waveforms are displayed in the max scale automatically.

"Changing the displayed waveforms"

Press the V Key to change the displayed waveforms.

"V x desired magnification"

F1

e.g.) The following represents 3P4W (Three-phase 4-wire) while "Linear" and "Full-scale display" are selected.

ltu	عفا			- 🕊 👫	/01/2014 7:01:58
۷:	241.1	241.1	238.3	v	
THD:	655.35	655.35	655.35	\$	
100				00100112	
					All
					1ch
50					2ch
					3ch
0	in the	- Dest. and			
	1 10	20	30 4	0 50	
	List	LOG	Zoom	V/	A/P

Symbols displayed on the LCD						
V	Voltage A Current For 3P3W3A, rms line voltages are displayed. A Current					
THD	Voltage total harmonic distortion is displayed while "V" is displayed and current total distortion factor is displayed while "A" is displayed. Total harmonic distortion is calculated according to the selected THD calculation method.					
Ρ	+ Active power per ch -	in out	ΣΡ	Sum of each ch/ total active power	+ -	in out

Bar graph display

e.g.) "Linearity" is displayed in "Full-scale".

In the above example, "Linear" and "full-scale" are selected. In this case, the upper limit of the rate of content is "100%" and all harmonics, 1st to 50th, are displayed on one screen.

Item displayed on the LCD				
Rate of content	Harmonic content of each order against the 1st basic wave.			

e.g.) The following represents 3P4W (Three-phase 4-wire) while "LOG" and "Zoom" are selected.

When selecting "LOG" (Logarithm), 10% will be the max percentage of the vertical axis and the harmonics displayed are limited up to 15th order. Press the key to scroll the pages. The basic waveform of 1st order is fixed and does not move. The white bar shows the percentage of hidden pages and the dark orange bar shows the percentage of the present displayed page.

e.g.) 3P4W (Three-phase 4-wire) : with "LOG" and "Zoom".

	Items displayed on the graph
Evenedian	Displayed when the rate of harmonics content of each order is more than 10%.
the axis value	The rate of harmonics content of the 1st basic waveform is "100%", therefore,
	always exceeding the axis value in "LOG" display.
	Max values recorded during measurements are displayed. These values can be
	reset any of the following methods.
Max value	* Setting change,
	* Start of recording, or
	* Long press (2 sec or longer) of Key.
Orente ester	When multiple measurement channels are used, each graph is displayed in
Graph color	different colors.
Exceeding the	
threshold	Displayed when measured values exceed the preset allowable range.
	Preset by default and complied with IEC61000-2-4 Class3.
Allowable range	To change the range, select "Edit allowable range." in the "Measurement" setting.

"Change the displayed chs"

Press the *Key* to change the displayed chs. The details about the relation between the wiring configuration and ch are described in "*Settings of wiring system*" (**P.49**).

"List"/"Graph"

Press the F1 Key to display voltage/ current/ power harmonics, from 1st to 50th order, in list or graphic form. Only the rate of harmonics content can be checked on graph display screen, but rms value/ rate of content/ phase angle* can be checked respectively on list display screen.

* While "P"(Power) is selected and displayed, phase differences between voltage and current are displayed. Inflow: ±0° to ±90°, Outflow: ±90° to 180°.

"LOG"/ "Linear"

Press the F2 (LOG/Linear) Key to switch the display modes. Linear display, with ticks of 0% - 100%, and Logarithm display, with ticks of 0.1% - 10%, are switchable on the vertical axis. It is useful to analyze lower level of harmonics.

"Full"/"Zoom"

Press the (Zoom/Full) Key to zoom and display fifteen harmonics on one screen. Voltage/

Current/ Power harmonics are separately displayed in graphic form. Press the	Key to scroll
the pages.	

"V/A/P/ΣP"

Press the F4

 \mathcal{V} (V/A/P/ Σ P) Key and select the parameter to be analyzed.

75

Displaying the list of harmonics

Press the (List) Key to display the list of harmonics.

e.g.) "P: Power harmonics" and "Power" of 1P3W-2 (Single-phase 2-wire, 2-system) are listed.

In.				 06/01/2014
Р	P1_1	P2_1	P1_2	P2_2
1	88.	5 89.1	-20.4	89.1kw
2	0.0	ט.ט	0.0	0.0kW
3	0.0	0.0	0.0	0.0kw
4	0.0	0.0	0.0	0.0kw
5	0.0	0.0	0.0	0.0kw
6	0.0	0.0	0.0	0.0kw
7	0.0	0.0	0.0	0.0kw
8	0.0	0.0	0.0	0.0kw
9	0.0	0.0	0.0	0.0kw
10	0.0	0.0	0.0	0.0kw
44	0.0	0 0	0.0	0 0
Gr	raph	Rate		ΣP

Rms values, rate of content and phase angle of voltage/ current/ power harmonics, from 1st to 50th, can be displayed in list form respectively.

	Items displayed on the LCD						
V	Voltage	1		А	Currer	nt	
P ^{*2}	Active power per ch	+	in	ΣΡ ^{*2}	Sum of each ch /	+	in
_ '		-	out	21	total active power	-	out

^{*1} For 3P3W3A, rms line voltages are displayed.

^{*2} The letters and numbers displayed on the top represent the displayed parameter and the ch or system number. If there is a space between the alphabet and the following number, the displayed no. represents the system no.. In this case, the listed values are sum per system. If "P" is displayed alone, the listed values are total amounts.

<u>lin.</u>				- 06/01/2014 17:03:41	
Α	A1	A2	A3	A4	
1	450.0	448.9	299.7	448.8 /	1
2	0.0	0.0	0.0	0.0/	
3	0.0	0.0	0.0	0.0/	
4	0.0	0.0	0.0	0.0/	
5	0.0	0.0	0.0	0.0/	A
6	0.0	0.0	0.0	0.0/	V
7	0.0	0.0	0.0	0.0/	
8	0.0	0.0	0.0	0.0/	
9	0.0	0.0	0.0	0.0/	
10	0.0	0.0	0.0	0.01	
Gr	raph	Rate	- A A	V/A/P	
\mathbb{C}	F1	F2		F4	

"Change the displayed harmonics orders"

Press the W Key to scroll the page vertically.

"Graph"/ "List"

Press the F1 Key to display voltage/ current/ power harmonics, from 1st to 50th order, in list or graphic form. Only the rate of harmonics content can be checked on graph display screen,

"Rate of content"/"Phase angle"/ RMS value (Power)"

Press the F2 (Rate/ DEG/ RMS) Key to change the displayed items on the list. While "V":voltage or "A": Current are displayed on the screen, Rate/ DEG (phase angle with V1 basis (0°)) / RMS are switchable. While "P" (Σ P): Power is displayed, Rate/ DEG (voltage/ current phase angle per ch) / Power are switchable.

"V"/"A"/"P/ΣP"

Press the $(V/A/P/\Sigma P)$ Key and select the items to be analyzed: V: voltage/ A: Current/ P: Power (ΣP : Sum per system, Total amount).

6.7 Power quality

Press the Key to display Power quality screen.

Factors impair power quality and symptoms

Power quality	Waveform	Symptom	Adverse effect
Harmonics		Inverter and Thyristor circuits (phase-control circuit) are used for the control circuit of general devices; these circuits affect currents and causes harmonics.	Burnout of capacitors and reactors, buzzes from transformers, malfunction of circuit breakers, flicker in screen or noises on stereos due to currents with harmonic components.
Swell		Inrush currents occur when switches for power lines are on, and then voltages increase instantaneously.	
Dip		Inrush currents occur when motor loads are activated, and dip in current occurs.	Shutdown of devices or robots or reset on PC and business machines may be caused.
INT		Power supply is interrupted for a second due to lightning strikes.	

Factors impair power quality and symptoms

Power quality	Waveform	Symptom	Adverse effect
Transient, Over-voltage (impulse)		Contact failure at a circuit breaker, magnet or relay.	Damage to a power source or reset of the device may occur due to a drastic voltage fluctuation (spike).
Inrush current		Instantaneous large currents (surge) flow on devices with a motor, incandescent lamp and flat capacitor when powering them on.	Influences on welded contacts for Power switch, blowing fuse, trip on breaker, rectifier circuit and fluctuations in power supply voltage may occur.
Unbalance rate		Heavy loading on specific phase due to fluctuations in load of power line or drastic extension of installations. Distortions of voltage / current waveforms, dip and negative sequence voltages are caused.	Influences on voltage, current, motor operation occur; negative sequence voltage and harmonics occur.
Flicker		Too much load is caused on certain phases due to increase and decrease of the loads connected to each phase such as supply lines or heavy use of specific equipments, as a result, distortions on voltage and current waveforms, dip and reversed voltages are observed.	Unbalanced or reversed voltages and harmonics occur and result in motor instability, trip of 3E circuit breaker or heating due to overload.

Displaying recorded events

Press the F1

(Event) Key to display the list of the recorded events.

Measured values -				
	QU	ALITY		Ge/01/2014 17:04:02
		411t	s	Uccurrence
		102.0	۷	2013/12/23 13:55:41.217
	B	-257	۷	2013/12/23 13:55:38.647
		119.3	۷	2013/12/23 13:55:25.727
Symbol indicating		119.3	۷	2013/12/23 13:55:25.727
event type		-285	۷	2013/12/23 13:55:25.647
		75.0	۷	2013/12/23 13:55:12.105
		451.7	А	2013/12/23 13:54:55.597
		501.9	Α	2013/12/23 13:54:49.097
	F1	licker D	ete	ection

	Items and symbols displayed on the LCD				
Symbol	Start — End Swell Dip INT Transient Contraction Contraction Co				
Measured value	Instantaneous values recorded at the detection of the start and end of the event. If the occurred event terminates in quite short period, the value measured at the end of the event may not be displayed. To check the r.m.s. values recorded before/ after the detection, please check r.m.s. variation data. Interval measurement data will be helpful to check the measured values of long lasting events. To record power quality events, short interval is useful in analysis.				
Occurred time and date	Time and date when KEW6315 detect the start and end of the event.				

Event detection on poly-phase systems.

"INT"

When INT states are detected on all the chs selected according to the wiring configuration, it is regarded as the start of the event. When the INT state ends on any of the measurement chs, it is regarded as the end of the event.

"Swell"/ "Dip"/ "Inrush current"/ "Transient"

When voltage or current falls into any event states on any one of the measurement chs selected according to the wiring system, it will be regarded as the start of the event. When the state ends on all measurement chs, it is regarded as the end of the event.

Displaying recorded events

Measurement of Swell/ Dip/ INT/ Inrush current

Each event will be detected with the r.m.s. values in one gapless waveform and with a half-wave overlapping. The beginning of the waveform where the first event is detected is regarded as the start of the event. If further events are not detected in the following waveform, the beginning of the waveform is regarded as the end of the event. The detected event is assumed to be continued between the start to the end of event detection.

Example of Dip detection

* INT is detected in the same method.

Example of Swell detection

* Inrush current is detected in the same method.

KEW6315

Detection of Transient

Voltage waveforms will be monitored at approx 40ksps, gapless, to calculate and check for transient event every 200ms. The beginning of the 200ms period where the first transient is detected is regarded as the start of the event. If further events are not detected in the following 200ms period, the beginning of the period is regarded as the end of the event. The detected transient is assumed to be continued between the start to the end of event detection.

Save data

When an event occurs, event type, time of start/ end and measured values will be recorded together with the following data.

Event waveform

Waveforms and also event data on all the chs are recorded for approx. 200ms (50Hz: 10-cycle, 60Hz: 12-cycle) at 8192 points in total. When different events occur within 1 sec, only the waveforms which contain the highest-priority events will be recorded. However, if the same type of events occur at the same time, the one containing the highest (deepest) values will be recorded. If the highest (deepest) values are also the same, the one with a longer duration will be recorded. As for the channels, there is no priority order.

[Priority order]: Voltage transient -> INT -> Dip -> Swell -> Inrush current

RMS variations

Voltage/ current rms value variations and event data on all chs are recorded for 1 sec.

Example of Dip detection for approx. 800ms (saved data)

"Change the displayed area"

Press the *Key* to scroll the page vertically.

"Flicker"

Press the (Flicker) Key to display the recorded flicker values. Details are described in

"Displaying measured flicker values in list form" (P. 120).

"Event detection"

Press the (Detection) Key and toggle the displayed type of event.

Displaying measured flicker values in list form

Press the F1 (Flicker) Key.

Press the 👿 Key to change the displays: V: List display/ Pst(1min): Trend graph/

Plt: Transitional change.

	QUAL	ITY			-	06/01/2014 17:04:27	
Time left	Ps	st Calc.		03:03			
		1ch	2ch				
	٧:	104.0	103.6		V		
	Pst: 1min	0.671	0.716			V	\bigcirc
	Pst:	0.513	0.524			Pst	
	MAX	0.622	0.557			(1min)	V
	Plt:	0.433	0.463			D1+	
	MAX	0.531	0.486		l	FLL	
			f :	59.97	Hz		
ſ	Event						
	CE1						

If variable loads, such as arc furnace, are connected, voltages may vary and cause changes in illumination levels. Such phenomenon is called as "voltage flicker" and its severity level is indicated by "Pst" and "Plt".

	Items displayed on the LCD
Time left	Counted down time until a Pst calculation completes. Usually it takes about 10 min.
V	Phase voltage * For 3P3W and 3P3W3A, rms line voltages are displayed.
f	Frequency
Pst,1min	Severity of short term (1 min) flicker. It is useful for power quality survey or study.
Pst	Severity of short term (10 min) flicker.
Pst,MAX	Max Pst recorded through the beginning to the end of measurement. It is refreshed
	every time when the measured values exceed the previous max values.
Plt	Severity of long term (2 hours) flicker.
Plt,MAX	Max Plt recorded through the beginning to the end of measurement. It is refreshed
	every time when the measured values exceed the previous max values.

"Event"

Press the (F1) (Event) Key to display the recorded events. Please refer to "*Displaying recorded* events" (P. 116) in this manual.

Displaying trend graph of Pst, 1min

The "Pst, 1min" measured in the recent 120 min is displayed on the trend graph.

Items displayed on the LCD		
Pst,1min	The latest Pst (1 min)	
Maxivaluo	Max "Pst, 1min" recorded through the measurement. It is refreshed every time when	
	the measured values exceed the previous max values.	
Element time	The latest measured value is displayed at the right end (on 0 min tick), and it shifts	
Elapsed time	to left as time goes by. Changes in the recent 120 min can be displayed on one	
	screen.	

Displaying changes of Plt

Press the Key to move the cursor or to scroll the page to right and left. The black bar shows the percentage of hidden pages and the dark orange bar shows the percentage of the present displayed page.

The rec. start date and time is displayed when changes of Plt cannot be described on one page.

	Items displayed on the LCD
Maxivalue	Max Plt recorded from the beginning of the record until now. It is refreshed every time
	when the measured values exceed the previous max values.

"Data hold"

Display update can be disabled by pressing the "DATA HOLD" Key. The " display update is disabled. The icon will disappear and display update will be enabled by pressing the "DATA HOLD" Key again. Switching screens is possible, moreover, measured values and event information are continuously recorded even while the Data hold function is activated.

"Key lock"

Pressing the "DATA HOLD" Key 2 sec or more disables all Keys, except for LCD key, and " appears. Another long press (2 sec or more) is required to restore the disabled Keys.

"Turning off the Backlight"

Press the LCD Key to turn off the backlight. Pressing any keys, except for the Power key, turns on the backlight again.

"Backlight Auto-off"

While KEW6315 is connected to an AC power source:

The LCD backlight is turned off automatically 5 min after the last key operation. Press any key except for the Power key to turn on the light again. To disable the Backlight auto-off function, select "Disable auto-off" on the setup menu.

While KEW6315 operates with battery:

The brightness will be cut by half. The backlight will be automatically turned off 2min after it is turned on. Press any key except for the Power Key to turn on the backlight again. The backlight does not on continuously while the instrument is operating with batteries.

"Auto-power-off"

While KEW6315 is connected to an AC power source:

The instrument is powered off automatically 5 min after the last key operation. This function does not operate while the instrument is recording data. Press the Power key to power on the instrument again. To disable the auto-power-off function, select "Disable auto-off" on the setup menu.

While KEW6315 operates with battery:

The instrument is powered off automatically 5 min after the last key operation. This function does not operate while the instrument is recording data. Press the Power key to power on the instrument again.

" icon

"Auto-ranging" (Current range)

Current ranges of each sensor are automatically switched according to the measured rms currents. This function does not work while recoding the power quality events. A range shifts to one upper range when the input exceeds 300%peak of each range and shifts to one lower range when the input drops under 100%peak of each range. However, while "AUTO" is selected, the upper range will be adopted to display the values.

"Sensor detection"

Press the "Detection" key on the SETUP menu to detect the connected clamp sensors. KEW6315 automatically detects the connected sensors and checks the settings of the sensors.

"Recovery from power fails"

When the power supply to the instrument is inadvertently lost during a record, the interrupted record will be resumed after the power supply is restored.

"Print screen"

Press the "PRINT SCREEN" Key to save the displayed screen as a BMP (bitmap) file.

* Max file size: approx. 77KB

"Retain settings"

Settings used during the previous test will not be cleared after powering off the instrument. KEW6315 retains and adopts the previous settings. * Default values will be displayed for the first time after purchase.

"Quick start guide"

Press the "START/STOP" Key to run the "Quick start guide". It is useful to start recording just by adjusting some simple settings according to the displayed screens.

"Status indicator"

The red indicator LED blinks when the backlight is off, and the green indicator LED stays on during recording regardless of the backlight states. The green indicator LED blinks during stand-by mode.

Chap. 8 Device connection

8.1 Data transfer to PC

Data in the SD card or the internal memory can be transferred to PC via USB or SD card reader.

	Transfer to PC via:	
	USB ^{*1}	Card reader
SD card data (file)	Δ	0
Internal memory data (file)	0	

*1: It is recommended to transfer the large data by use of SD card since transferring large data files by USB requires more time than using the SD card reader. (transfer time : approx 320MB/ hour) As to the manipulation of SD cards, please refer to the instruction manual attached to the card. In order to save data without any problem, make sure to delete the files other than the data measured with this instrument from the SD card beforehand.

KEW6315

8.2 Using Bluetooth[®] function

Measuring data can be checked on android devices in real-time via Bluetooth[®] communication. It is necessary to enable Bluetooth[®] function prior to using Bluetooth[®] communication. (Setting No. 26: Bluetooth)

* Before starting to use this function, download the special application "KEW Smart" from the Internet site. The application "KEW Smart" is available on the download site for free. (Internet access is required and charges may be incurred.)

* "Bluetooth[®]" is a registered trademark of Bluetooth SIG.

8.3 Signal control

Connection to input/ output terminals

CAUTION

- Voltages applied to the terminals should not exceed the following ranges.
 - * for input terminals: within \pm 11V, for output terminals: between 0 and 30V(50mA, 200mW) Otherwise, the instrument may be damaged.
- The root of each L-terminal is the same. Do not connect different ground levels of multiple inputs at the same time. Roots of the L terminals for each Ch are integrated. Never connect inputs with various ground levels to the terminal at the same time.

Ensure that the wires are connected to proper terminals.

Wires of following dimensions can be used.

Suitable wire : single-wire ϕ 1.2 (AWG16), twisted wire 1.25mm² (AWG16),

strand size ϕ 0.18mm or more

Usable wire : single-wire ϕ 0.4 - 1.2 (AWG26 - 16), twisted wire 0.2 - 1.25mm² (AWG24 - 16), strand size ϕ 0.18mm or more

Standard length of bare wire: 11mm

- 1 Open the Connector cover.
- 2 Press the rectangular protrusion above a terminal with a flat-blade screw driver, and insert
 - a signal wire.
- 3 Remove the driver and fix the wire.

"Input terminal"

For monitoring the voltage output signals of Thermo sensors. These terminals are useful to measure the signals from other devices and power failures at the same time.

Number of Ch: 2ch Input resistance : approx 225.6kΩ

"Output terminal"

For fixing the generating outputs to "Low" while power quality events are lasting. Usually, it is fixed to "High", but changed to "Low" if the duration of an event is less than 1 sec. This is applicable to the events with the highest-priority only. To adjust the generating outputs to the events with low-priority, select "OFF" for the events with higher priority than the desired event. The details are described in "*Threshold setting for Power quality (Event)*" (**P. 65**). * [*Priority order]: Transient -> INT -> Dip -> Swell -> Inrush current*

8.4 Getting power from measured lines

If it is difficult to get power from an outlet, KEW6315 operates with power from the measured line by using

Power supply adapter MODEL8312 and voltage test leads.

DANGER

- When the instrument and the test lead are combined and used together, whichever lower category either of them belongs to will be applied. Confirm that the measured voltage rating of the test lead is not exceeded.
- Do not connect a Voltage test lead unless required for measuring the desired parameters.
- Connect Voltage test leads to the instrument first, and only then connect them to the measured line.
- Never disconnect the voltage test leads from the connectors of the instrument during a measurement (while the instrument is energized).
- Connect to the downstream side of a circuit breaker since a current capacity at the upstream side is large.

M WARNING

- Power off the instrument before connecting the adapter and test leads.
- Connect Voltage test lead to the instrument first. It should be firmly connected.
- Stop using the test lead if the outer jacket is damaged and the inner metal or color jacket is exposed.

240V or more

4

1/6

Connect the Adapter according to the following procedure.

CAUTION

- For your safety, make connections according to the following procedures.
- Fuse may blow if the connections aren't made per our specified procedures.
- 1 Confirm that the Power switch on MODEL8312 is "OFF".
- Connect the Plug of MODEL8312 to VN and V1 terminals on KEW6315.
- 3 Connect the Power Plug of MODEL8312 to the Power connector On KEW6315.
- 4 Connect the Voltage test leads to VN and V1 terminals of the Adapter.

5 Connect the Alligator clips of the voltage test leads to the circuit under test.

- 6 Power on MODEL8312.
- 7 Start KEW6315.

* Reversed procedure is applied to remove the Adapter from KEW6315.

Please refer to the instruction manual for MODEL8312 for further details.

MODEL8312 Measurement CAT III 150V CAT II 240V Fuse rating : AC500mA/ 600V, Fast acting, ϕ 6.3 x 32mm

The special software "KEW Windows for KEW6315" for data analysis and for making KEW6315 settings is available. * Automatic creation of graph and list from recorded data. Uniform management of setting and recorded data acquired from multiple devices. Data can be expressed in crude oil and CO2 equivalent values in the report.

Please refer to the installation manual for "KEW Windows for KEW6315" and install the application and USB driver in your PC.

Interface

This instrument is equipped with USB and Bluetooth[®] interfaces. Communication method : USB Ver2.0 Bluetooth[®] : Bluetooth[®] Ver.5.0 Compliant profile: GATT

The following can be done by USB/ Bluetooth[®] communication.

- * Downloading files in the internal memory of the instrument to a PC
- * Making settings for the instrument via a PC

* Displaying the measured results on a PC as graphs in real-time and also saving the measured data at the same time

- System Requirements
 - * OS (Operation System)

Please refer to version label on CD case about Windows os.

- * Display
- 1024 × 768 dots, 65536 colors or more
- * HDD (Hard-disk space required)
- 1Gbyte or more (including Framework)
- *.NET Framework (4.6.1 or more)
- Trademark
 - * Windows[®] is a registered trademark of Microsoft in the United States.
- * Bluetooth[®] is a registered trademark of Bluetooth SIG.

The latest software is available for download from our homepage.

http://www.kew-ltd.co.jp

KEW6315

Chap. 10 Specification

10.1 Safety requirements

Location for use	: In door use, Altitude up to 2000m		
Temperature & humidity range : 23°C±5°C, Relative humidity 85% or less (no condensation)			
(guaranteed accuracy)			
Operating Temperature &	: 0°C to 45°C, Relative humidity 85% or less (no condensation)		
humidity range			
Storage Temperature &	: -20°C to 60°C, Relative humidity 85% or less (no condensation)		
humidity range			
Withstand voltage			
AC5160V/ for 5 sec.	Between (AC Voltage input terminal) and (Enclosure)		
AC3310V/ for 5 sec.	Between (AC Voltage input terminal) and (Current input terminal, Power connector,		
	USB connector)		
AC2210V/ for 5 sec.	Between (Power connector) and (Current input terminal, USB connector,		
	Enclosure)		
Insulation resistance	: 50M Ω or more / 1000V; Between (Voltage/Current input terminal,		
	Power connector) and (Enclosure)		
Applicable standards	: IEC 61010-1 Measurement CAT IV 300V CAT III 600V CAT II 1000V		
	Pollution degree 2, IEC 61010-031, IEC 61326 Class A		
Dust-/ water-proof	: IEC 60529 IP40		
Environmental standard	: EN 50581		

10.2 General specification

Measured line and Input ch : Current ch (A2-A4) unrelated to the selected wiring system can be used for any measurement purpose.

	Input ch		
wiring system	Voltage	Current	
Single-phase2-wire-1-system (1P2W-1)	VN-V1	A1	
Single-phase2-wire-2-system (1P2W-2)	VN-V1	A1,A2	
Single-phase2-wire-3-system (1P2W-3)	VN-V1	A1,A2,A3	
Single-phase2-wire-4-system (1P2W-4)	VN-V1	A1,A2,A3,A4	
Single-phase3-wire-1-system (1P3W-1)	VN-V1,V2	A1,A2	
Single-phase3-wire-2-system (1P3W-2)	VN-V1,V2	A1,A2,A3,A4	
Three-phase3-wire-1-system (3P3W-1)	VN-V1,V2	A1,A2	
Three-phase3-wire-2-system (3P3W-2)	VN-V1,V2	A1,A2,A3,A4	
Three-phase3-wire(3P3W3A)	V1-V2,V2-V3,V3-V1	A1,A2,A3	
Three-phase4-wire(3P4W)	VN-V1,V2,V3	A1,A2,A3	

LCD

: 3.5inch, TFT, QVGA(320×RGB×240)

Display update

: every 1 sec*

* There may be time lag in display update (max. 2 sec) due to arithmetic processing, however, no time lag between the recorded data and the time stamp.

Backlight (Press the L	.CD Key to tu	ırn off, press any key	other than	"Power" to turn on.)
PQ measurement	: IEC 61000	-4-30 Ed.2 Class S		
Dimension	: 175(L)×12	0(W)×68(D)mm		
Weight	: approx. 90	0g (including batterie	es)	
Accessories	: V test lead	ls MODEL7255 (red, v	vhite, blue, bla	ack) with alligator clip · 1 set
	Power core	d MODEL7169		
	USB cable	MODEL7219		1 pce
	Quick man	ual·····		
	CD-ROM…			
	PC soft	ware for setting and o	data and dat	ta analysis
	(KEW V	Vindows for KEW631	5)	2
	Instructi	ion manual data (PDI	- file)	
	Alkaline siz	ze AA battery (LR6)		6 pcs
	SD card M	-8326-02		
	Carrying ca	ase MODEL9125·····		1 рсе
	Input termi	nal plate ·····		1 рсе
	Cable mar	ker·····	··· 8-color x	4pcs each (red, blue, yellow,
			green, br	own, gray, black, white)
Optional parts	: Clamp sen	ISOR	504	
	MODEL8	Clamp sensor	50A 50A	ø24mm) ø75mm)
	MODEL 81	27 (Clamp sensor	100A	ø24mm)
	MODEL81	126 (Clamp sensor	200A	ø40mm)
	MODEL81	125 (Clamp sensor	500A	ø40mm)
	MODEL81	24 (Clamp sensor	1000A	ø68mm)
	KEW8129	(Flexible sensor	3000A	ø150mm) *Discontinued product
	KEW8130	(Flexible sensor	1000A	ø110mm)
	KEW8133		3000A	Ø170mm)
		146 (Leakage sensor	10A	ø24(1)(1) ø40mm)
	MODEL01	147 (Leakage sensor	10A	ø68mm)
	MODEL81	141 (Leakage sensor	1A	ø24mm) *Discontinued product
	MODEL81	142 (Leakage sensor	1A	ø40mm) *Discontinued product
	MODEL81	143 (Leakage sensor	1A	ø68mm) *Discontinued product
	Instruction	manual for Clamp s	ensor	
	Carrying o	ase with magnet MO	DEL9132	
Accuracy	within +5 se		0312 (CAI.I	11 150V, CALII 240V)
Power source		supply		
	. AC power			0C () ()
vollage range		AC 100V(AC90V) - A		204 V)
Frequency		50HZ(47HZ) - 60HZ	(63HZ)	
Power consumption		7VAmax		
Γ	: DC power	supply		

	Dry-cell battery	Rechargeable battery
Voltage	DC3.0V (1.5V×2 in series × 3 in parallel)	DC2.4V (1.2V×2 in series × 3 in parallel)
Battery	Size AA Alkaline (LR6)	Size AA Ni-MH (1900mA/h)
Current consumption	1.0A typ.(@3.0V)	1.1A typ.(@2.4V)
Battery life *ref. value at 23°C	3 hours: Backlight OFF	4.5 hours: Backlight OFF * with fully charged batteries

Real-time OS

:

This Product uses the Source Code of T-Kernel under T-License granted by the T-Engine Forum (<u>www.t-engine.org</u>) Portions of this software are copyright (c) 2010 The FreeType Project (www.freetype.org). All rights reserved.

Connector	mini-B
Communication method	USB Ver2.0
USB identification no.	Vendor ID: 12EC(Hex)
	Product ID: 6315(Hex)
	Serial no.: 0+7 digit individual no.
Communication speed	12Mbps (full-speed)
	: Bluetooth [®]
Communication method	Bluetooth [®] Ver.5.0
Profile	GATT
Frequency	2402 - 2480MHz
Modulation method	GFSK(1Mbps), π/4-DQPSK(2Mbps), 8DPSK(3Mbps)
Transmission system	Frequency-hopping system

External communication function : USB * USB cable length: 2m max.

Digital output terminal :

Normally, it is set to "High". It changes to "Low" while the measured values are exceeding the thresholds set for each power quality event. Usually, it is fixed to "High", but changed to "Low" if the duration of an event is less than 1 sec. This is applicable to the events with the highest-priority only. To adjust the generating outputs to the events with low-priority, select "OFF" for the events with higher priority than the desired event.

* [Priority order]: Transient -> INT -> Dip -> Swell -> Inrush current

Connector	Terminal block with 6-polarity (black, red, gray ML800-S1H-6P)
Output format	Open collector output, Low active
Input voltage	0 - 30V, 50mAmax, 200mW
Output voltage	High:4.0V-5.0V, Low:0.0 - 1.0V

10.2 General specification

Data storage location	: Internal FLASH memory
Storage capacity	4MB (Data storage capacity: 3,437,500byte)
Max data size	14,623byte/data (max: 234 data) [*] 3P3W-2/1P3W-2 (Power + Harmonics)
Max number of saved file	3 * Number of times that you can start a measurement.
Icon display	When the internal memory is available, the "
	LCD during record.
FULL indication	The " icon blinks when saved data size or number of saved file exceeds
	the capacity. Data cannot be saved while this mark is being displayed.
	The instrument measures integration/ demand continuously, but does not
	record the data.
: SE) card
Storage capacity	2GB (Data storage capacity: 1.86Gbyte)
Max data size (2GB)	14,623byte/data (Max:1,271,964 data) *3P3W-2/1P3W-2(Power+ Harmonics)
Max number of saved file (2GB)	65536 * Number of times that you can start a measurement.
Icon display	When the SD card is available, the "

Format (2GB)	FAT16
FULL indication	The " The " icon blinks when saved data size or number of saved file exceeds
	the capacity. Data cannot be saved while this mark is being displayed.
	The instrument measures integration/ demand continuously, but does not
	record the data.

10.3 Measurement specification

Measured items and the number of analysis points

Computed with 8192-point data while regarding 200ms(50Hz:10-cycle, 60Hz:12-cycle) as one measurement area.

Frequency, r.m.s. voltage/ current, active power, apparent power, reactive power, PF, Capacitance calc.

Computed with 2048-point data while regarding 200ms(50Hz:10-cycle, 60Hz:12-cycle) as one measurement area.

Voltage/current unbalance ratio, r.m.s. harmonics voltage/current (rate of content), harmonics reactive power, total harmonics voltage/ current distortion factor (THDV-F/R)/ (THDA-F/R), phase angle of harmonics voltage/ current, phase difference of harmonics voltage/ current

Computed with 819-point data (50Hz), 682-point data (60Hz) while regarding one waveform overlapped every half wave as one measurement area.

Voltage dip, voltage swell, INT, Inrush current

Described based on inst values measured at 40.96ksps.

Voltage/ current waveform, External input voltage

Items measur	ed at Instantaneous measurement
Frequency f [l	Hz]
Displayed digit	4-digit
Accuracy	±2dgt (40.00Hz - 70.00Hz, V1 Range 10% - 110%, sine wave)
Display range	10.00 - 99.99Hz
Input source	V_1 (fix)
10-sec average	ge frequency f10 [Hz]
Displayed digit	4-digit * e.g. averaged frequency values at 10 sec of intervals
Meas. system	Complied with IEC61000-4-30
Accuracy	±2dgt (40.00Hz - 70.00Hz, V1 Range 10% - 110%, sine wave)
Display range	10.00 - 99.99Hz
Input source	V ₁ (fix)
R.M.S. Voltag	<u>ie V [Vrms]</u>
Range	600.0/1000V
Displayed digit	4-digit
Effective input range	1% - 120% of Range (rms) and 200% of Range (peak)
Display range	0.15% - 130% of Range ("0" is displayed at less than 0.15%)
Crest factor	3 or less
Meas. system	Complied with IEC61000-4-30
Accuracy	Assuming that measuring 40-70Hz, sine wave at 600V Range: 10% - 150% against 100V or more of nominal V :Nominal V±0.5% Out of above range and at 1000V Range :±0.2%rdg±0.2%f.s.
Input impedance	approx 1.67MΩ
Equation	$V_{c} = \sqrt{\left(\frac{1}{n}\left(\sum_{i=0}^{n-1} (V_{ci})^{2}\right)\right)}$ i : sampling point* n: number of sampled values at 10 or 12-cycle c : Measurement channel * 50Hz: 8192 points in 10 waveforms, 60Hz: 8192 points in 12 waveforms
1P2W-1 to 4	V1
1P3W-1 to 2	V ₁ , V ₂
3P3W-1 to 2	Line voltage: V_{12} , V_{23} , $V_{31} = \sqrt{(V_{23}^2 + V_{12}^2 + 2 \times V_{23} \times V_{12} \times \cos\theta V)}$
00014/04	* θ V=relative angles of V ₁₂ , V ₂₃
3P3W3A	Line voltage: V ₁₂ , V ₂₃ , V ₃₁
3P4W	Phase voltage: $V_{1,} V_{2,} V_{3}$
	Line voltage : $V_{12} = \sqrt{(V_1^2 + V_2^2 - 2 \times V_1 \times V_2 \times \cos\theta V_1)}$
	$V_{23} = \sqrt{(V_2^2 + V_3^2 - 2 \times V_2 \times V_3 \times \cos\theta V_2)}$
	$V_{31} = \sqrt{(V_3^2 + V_1^2 - 2 \times V_3 \times V_1 \times \cos\theta V_3)}$
	* θV_1 = relative angles of V_1 , V_2 , θV_2 = relative angles of V_2 , V_3 ,
	θV_1 = relative angles of V_3 , V_1

R.M.S. Current A [Arms]			
Range	MODEL8128	(50A)	:5000m/50.00A/AUTO
•	MODEL8127	(100Á)	:10.00/100.0A/AUTO
	MODEL8126	(200A)	:20.00/200.0A/AUTO
	MODEL8125	(500A)	:50.00/500.0A/AUTO
	MODEL8124/KEW8130	(1000A)	:100.0/1000A/AUTO
	MODEL8141/8142/8143	(1A)	:500.0mA
	MODEL8146/8147/8148	(10A)	:1000m/10.00A/AUTO
	KEW8129	(3000A)	:300.0/1000/3000A
	KEW8133	(3000A)	:300.0/3000A/AUTO
Displayed digit	4-digit		
Effective input	1% - 110% of each Rang	e (rms) and 200	0% of Range (peak)
range			
Display area	0.15% - 130% of each range ("0" is displayed at less than 0.15%)		
Crest factor	3 or less		
Meas. system	Complied with IEC61000	-4-30	
Accuracy	Assuming that measuring	g 40-70Hz, sine	wave:
	±0.2%rdg±0.2%f.s.+ accu	uracy of clamp s	sensor
Input impedance	approx 100kΩ		
Equation	$Ac = \sqrt{\left(\frac{1}{n}\left(\sum_{i=0}^{n-1}\left(\sum$	$A_{ci})^2)) $	c : Measurement channel A ₁ , A ₂ , A ₃ , A ₄ i :sampling point* n: number of sampled values at 10 or 12-cycle
	* 50Hz: 8192 points in 10) waveforms, 60	Hz: 8192 points in 12 waveforms
	* A _{3 value for} 3P3W-1 to 2	2 is calculated w	ith r.m.s. current values.
	$A_3 = \sqrt{(A_1^2 + A_2^2 + 2)}$	×A1×A2×cosθA) relative angles of $\theta A = A_1$, A_2

Active power P [W]

Range						
Current	8128		8127		8126	
Voltage	50.00A	5000mA	100.0A	10.00A	200.0A	20.00A
1000V	50.00k	5000	100.0k	10.00k	200.0k	20.00k
600.0V	30.00k	3000	60.00k	6000	120.0k	12.00k
Current	81	25	812	24/30	8146/47/48	
Voltage	500.0A	50.00A	1000A	100.0A	10.00A	1000mA
1000V	500.0k	50.00k	1000k	100.0k	10.00k	1000
600.0V	300.0k	30.00k	600.0k	60.00k	6000	600.0
Current	8141/42/43		8129		81	33
Voltage	500.0mA	3000A	1000A	300.0A	3000A	300.0A
1000V	500.0	3000k	1000k	300.0k	3000k	300.0k
600.0V	300.0	1800k	600.0k	180.0k	1800k	180.0k
Displayed digit	4-digit					
Accuracy	±0.3%rdg±0.2	%f.s.+ accurac	y of clamp sen	sor (PF 1, sine	wave, 40-70H	z)
	*Sum values	are total amour	nts of the used	channels.		
Influence of PF	±1.0%rdg (40Hz-70Hz, PF0.5)					
Polarity	Consumption (flow-in):+(no sign), Regenerating(flow-out):-					
Formula	$D = \frac{1}{2} \left(\sum_{i=1}^{n-1} (V_{i} \times A_{i}) \right)$ c: Measurement channel					
	$\int \frac{1}{n} \frac{1}{\sqrt{n}} \int \frac{2}{\sqrt{n}} \frac{2}{n$	$=0^{(V ci \times Aci)}$	i: sam	pling point*		
	×.	-	n: num	ber of sampled	values	
	* 50Hz: 8192	points in 10 wa	veforms, 60Hz	: 8192 points in	12 waveforms	5
1P2W-1 to 4	P _{1,} P ₂ , P ₃ , P ₄	, P _{sum} =P ₁ +P ₂	+P3+P4			
1P3vv(3P3vv)-1 to 2	P _{1,} P ₂ , P _{sum1}	=P ₁ +P ₂				
	P3, P4, P _{sum2}	e=P3+P4				
00004/04	P _{sum} =P _{sum1} +P _{sum2}					
3P3W3A	P_1 , P_2 , P_3 , $P_{sum}=P_1+P_2+P_3$ * Phase voltages are used.					
3P4W	P ₁ , P ₂ , P ₃ , P ₃	sum=P1+P2+P3				
External inpu	t voltage D	DCi [V]				
Range	100.0mV/ 100	0mV/ 10.00V				
Displayed digit	4-digit					
Effective input	1% - ±100% (DC) of each Ra	ange			
range	0.00/	("O" : 1: 1		2 00()	
Display range	0.3% - ±110%	of each Range	e ("0" is display	ed at less than (J.3%)	
Accuracy	±0.5%f.s (DC)					
Input impedance	Approx. 225.6	κΩ 				
Saved Item	External input	voltage				

Items to be calculated

Apparent power S [VA]		
Range	Same as active power.	
Displayed digit	Same as active power.	
Accuracy	±1dgt against each calculated value (for sum : ±3dgt)	
Sign	No polarity indication	
Equation	$S_c = V_c \times A_c$; when $P_c > S_c$, regarding $P_c = S_c$. c: Measurement channel	
1P2W-1 to 4	S ₁ , S ₂ , S ₃ , S ₄ , S _{sum} =S ₁ +S ₂ +S ₃ +S ₄	
1P3W-1 to 2	$S_{1}, S_{2}, S_{sum1} = S_{1} + S_{2}$	
	S ₃ , S ₄ , S _{sum2} =S ₃ +S ₄	
	S _{sum} =S _{sum1} +S _{sum2}	
3P3W-2	$S_{1}, S_{2}, S_{sum1} = \sqrt{3/2}(S_{1}+S_{2})$	
	$S_{3}, S_{4}, S_{sum2} = \sqrt{3/2}(S_{3}+S_{4})$	
	S _{sum} =S _{sum1} +S _{sum2}	
3P3W3A	S ₁ , S ₂ , S ₃ , S _{sum} =S ₁ +S ₂ +S ₃ * Phase angles are used.	
3P4W	$S_{1}, S_{2}, S_{3}, S_{sum} = S_{1} + S_{2} + S_{3}$	

Reactive pow	er Q [Var]
Range	Same as active power.
Displayed digit	Same as active power.
Accuracy	±1dgt against each calculated value (for sum : ±3dgt)
Sign	 – : leading phase (current phase against voltage)
	 + (no sign) : lagging phase (current phase against voltage) Harmonics reactive power is calculated per ch, and the polarity sign of the reversed basic waveform is displayed.
Equation	$Q_c = sign \sqrt{Sc^2 - Pc^2}$ sign: Polarity sign , c: Measurement channel
1P2W-1 to 4	$Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{sum} = Q_{1} + Q_{2} + Q_{3} + Q_{4}$
1P3W(3P3W)-1 to 2	$Q_{1}, Q_{2}, Q_{sum1} = Q_{1} + Q_{2}$
	$Q_{3}, Q_{4}, Q_{sum2} = Q_{3} + Q_{4}$
	Q _{sum} =Q _{sum1} +Q _{sum2}
3P3W3A(3P4W)	$Q_{1}, Q_{2}, Q_{3}, Q_{sum} = Q_{1} + Q_{2} + Q_{3}$

Power factor:	PF		
Display range	-1.000 to 0.000 to 1.000		
Accuracy	±1dgt against each calculated value (for sum : ±3dgt)		
Sign	 ileading phase (no sign) : lagging phase Harmonics reactive power is calculated per ch, and the polarity sign of the reversed basic waveform is displayed. 		
Equation	$PF_c = sign \left \frac{P_c}{S_c} \right $ sign: Polarity mark, c: Measurement channel		
1P2W-1 to 4	PF ₁ , PF ₂ , PF ₃ , PF ₄ , PF _{sum}		
1P3W(3P3W)-1	PF ₁ , PF ₂ , PF _{sum1}		
to 2	PF ₃ , PF ₄ , PF _{sum2}		
	PF _{sum}		
3P3W3A(3P4W)	PF ₁ , PF ₂ , PF ₃ , PF _{sum}		
Neutral currer	t An [A] * only when the wiring configuration is 3P4W.		
Range	Same as r.m.s. current.		
Displayed digit	Same as r.m.s. current.		
Display area	Same as r.m.s. current.		
Equation			
$An = \sqrt{A1 + A2c}$	$\cos(\theta 2 - \theta 1) + A3\cos(\theta 3 - \theta 1)\}^2 + \{A2\sin(\theta 2 - \theta 1) + A3\sin(\theta 3 - \theta 1)\}^2$		
* θ1,2,3 represent th	ne phase differences between V1 and A1,2 and 3 respectively.		
Displayed digit	5-digit		
Display range	0.00% to 100.00%		
Wiring	3P3W, 3P4W		
Meas. system	Complied with IEC61000-4-30		
Accuracy	±0.3%: at 50/60Hz, sine wave		
Equation	(between 0 to 5 % according to IEC61000-4-30)		
Equalion	$Vumb = \sqrt{\left(\frac{1 - \sqrt{(3 - 6\beta)}}{1 + \sqrt{(3 - 6\beta)}}\right) \times 100} \beta = \frac{V_{12}^4 + V_{23}^4 + V_{31}^4}{\left(V_{12}^2 + V_{23}^2 + V_{31}^2\right)^2}$		
	* The 1st order components of harmonic voltage are used.		
	* For 3P4W system, phase voltages are converted to line voltages for		
	calculation.		

$$V_{12} = V_{1} - V_{2}, V_{23} = V_{2} - V_{3}, V_{31} = V_{3} - V_{1}$$

Items to be calculated

Current unbala	ance ratio Aunb [%]
Displayed digit	5-digit
Display range	0.00% to100.00%
Wiring	3P3W, 3P4W
Equation	$Iumb = \sqrt{\left(\frac{1 - \sqrt{(3 - 6\beta)}}{1 + \sqrt{(3 - 6\beta)}}\right)} \times 100 \qquad \beta = \frac{A_{12}^4 + A_{23}^4 + A_{31}^4}{\left(A_{12}^2 + A_{23}^2 + A_{31}^2\right)^2}$
	* The 1st order components of harmonic current are used.
	* For 3P4W system, phase voltages are converted to line voltages for
	calculation.
	$A_{12} = A_1 - A_{2}, A_{23} = A_2 - A_3, A_{31} = A_3 - A_1$
Capacitance c	alculation
Displayed digit	4-digit, Unit: nF, μF, mF, kvar
Display range	0.000nF - 9999F, 0.000kvar - 9999kvar
Equation	$C_{C} = P_{C} \times \left(\sqrt{\frac{1}{PF_{C}^{2}} - 1} - \sqrt{\frac{1}{PF_{C_{-}T \operatorname{arg} et}^{2}} - 1} \right) [k \operatorname{var}]$ $= \frac{P_{C} \times 10^{9}}{2\pi f \times {V_{C}}^{2}} \times \left(\sqrt{\frac{1}{PF_{C}^{2}} - 1} - \sqrt{\frac{1}{PF_{C_{-}T \operatorname{arg} et}^{2}} - 1} \right) [\mu F]$ $C_{c} : \text{Capacitance needs for improvement}$ $P_{c} : \text{Load power (active power) [kW]}$ $f : \text{Frequency}$ $V_{c} : \text{R.m.s. voltage}$
	<i>PF</i> _c : Measured PF
	<i>PF_{c_Target}</i> : New power factor (target)
1P2W-1 to 4	
1P3W(3P3W)-1	$C_1, C_2, C_3, C_4, C_{sum} = C_1 + C_2 + C_3 + C_4$
to 2	$C_1, C_2, C_{sum1} = C_1 + C_2$
	$U_1, U_2, U_{sum2}=U_3+U_4$
3P3\W3A(3P4\M)	C _{sum} =C _{sum1} + C _{sum2}
	$C_1, C_2, C_3, C_{sum} = C_1 + C_2 + C_3$

Items measured at Integration measurement Power consumption (if P≥0) Active power energy +WP [Wh]

Displayed digit	6-digit, Unit: m, k, M, G, T (harmonized with $+WS$)
Display area	0.00000mWh - 9999.99TWh (harmonized with $+WS$)
	* "OL" is displayed when the display area is exceeded.
Equation	$+WPc = \frac{1}{h} \left(\sum_{i} (+P_{ci}) \right)$
	h: integration period (3600 sec), c: Measurment channel, i: Data point no.
1P2W-1 to 4	+WP ₁ , +WP ₂ , +WP ₃ , +WP ₄ , +WP _{sum}
1P3W(3P3W)-1	$+WP_1$, $+WP_2$, $+WP_{sum1}$
to 2	+WP ₃ , +WP ₄ , +WP _{sum2}
	+WP _{sum}
3P3W3A(3P4W)	+WP ₁ , +WP ₂ , +WP ₃ , +WP _{sum}
A	

Apparent power energy +WS [VAh]

Displayed digit	6-digit, Unit: m, k, M, G, T (harmonized with $+WS$)
Display area	0.00000mVAh - 9999.99TVAh (harmonized with $+WS$)
	* "OL" is displayed when the display area is exceeded.
Equation	$+WSc = \frac{1}{h} \left(\sum_{i} \left(S_{ci} \right) \right)$
	h: integration period (3600 sec), c: Measurment channel, i: Data point no.
1P2W-1 to 4	+WS ₁ , +WS ₂ , +WS ₃ , +WS ₄ , +WS _{sum}
1P3W(3P3W)-1 to	+WS ₁ , +WS ₂ , +WS _{sum1}
2	+WS ₃ , +WS ₄ , +WS _{sum2}
	+WS _{sum}
3P3W3A(3P4W)	+WS ₁ , +WS ₂ , +WS ₃ , +WS _{sum}
Saved item	Apparent power energy

Items measured at Integration measurement Reactive power energy +WQ [Varh]

8	<u> </u>
Displayed digit	6-digit, Unit: m, k, M, G, T (harmonized with $+WS$)
Display area	0.00000mvarh - 9999.99Tvarh (harmonized with $+WS$)
	* "OL" is displayed when the display area is exceeded.
Equation	Leading phase $+WQc_c = \frac{1}{h} \left(\sum_i (+Q_{ci}) \right),$
	Lagging phase $+WQi_c = \frac{1}{h} \left(\sum_i (-Q_{ci}) \right),$
	h: integration period (3600 sec), n: System No., c: Measurement channel,
	i: Data point no. * where: Lagging phase: $Q \ge 0$, Leading phase: $Q < 0$
1P2W-1 to 4	+WQ ₁ , +WQ ₂ , +WQ ₃ , +WQ ₄ , +WQ _{sum}
1P3W(3P3W)-1	+WQ ₁ , +WQ ₂ , +WQ _{sum1}
to 2	+WQ ₃ , +WQ ₄ , +WQ _{sum2}
	+WQ _{sum}
3P3W3A(3P4W)	+WQ ₁ , +WQ ₂ , +WQ ₃ , +WQ _{sum}

Regenerating power (where: P<0) Active power energy - WP[Wh]

Displayed digit	6-digit, Unit: m, k, M, G, T (harmonized with $+WS$)
Display area	0.00000mWh - 9999.99TWh (harmonized with $+WS$)
	* "OL" is displayed when the display area is exceeded.
Equation	$-WPc = \frac{1}{h} \left(\sum_{i} \left(-P_{ci} \right) \right)$
	h: integration period (3600 sec), c: Measurment channel, i: Data point no.
1P2W-1 to 4	-WP ₁ , -WP ₂ , -WP ₃ , -WP ₄ , -WP _{sum}
1P3W(3P3W)-1	$-WP_1$, $-WP_2$, $-WP_{sum1}$
10 2	-WP ₃ , -WP ₄ , -WP _{sum2}
	-WP _{sum}
3P3W3A(3P4W)	$-WP_1$, $-WP_2$, $-WP_3$, $-WP_{sum}$

/6315	Items measured at Integration measureme
Apparent pow	er energy -WS[VAh]
Displayed digit	6-digit, Unit: m, k, M, G, T (harmonized with $+W\!S$)
Display area	0.00000mVAh - 9999.99TVAh (harmonized with $+WS$)
	* "OL" is displayed when the display area is exceeded.
Equation	$-WSc = \frac{1}{h} \left(\sum_{i} \left(S_{ci} \right) \right)$
	h: integration period (3600 sec), c: Measurment channel, i: Data point no.
1P2W-1 to 4	-WS1, -WS2, -WS3, -WS4, -WSsum
1P3W(3P3W)-1	-WS ₁ , -WS ₂ , -WS _{sum1}
to 2	-WS3 , -WS4 , -WS _{sum2}
	-WS _{sum}
3P3W3A(3P4W)	-WS ₁ , -WS ₂ , -WS ₃ , -WS _{sum}
Reactive power energy -WQ [Varh]	
Displayed digit	6-digit, Unit: m, k, M, G, T (harmonized with $+WS$)
Display area	0.00000mvarh - 9999.99Tvarh (harmonized with $+WS$)
	* "OL" is displayed when the display area is exceeded.
Equation	Leading phase $-WQc_c = \frac{1}{h} \left(\sum_{i} (+Q_{ci}) \right)$,
	Lagging phase $-WQi_c = \frac{1}{h} \left(\sum_{i} (-Q_{ci}) \right)$
	h: integration period (3600 sec), n: System No., c: Measurement channel,
	i: Data point no. * where: Lagging phase: Q ≧0, Leading phase: Q < 0
1P2W-1 to 4	-WQ ₁ , -WQ ₂ , -WQ ₃ , -WQ ₄ , -WQ _{sum}
1P3W(3P3W)-1	-WQ ₁ , -WQ ₂ , -WQ _{sum1}
to 2	-WQ ₃ , -WQ ₄ , -WQ _{sum2}
	-WQ _{sum}
3P3W3A(3P4W)	-WQ1, -WQ2, -WQ3, -WQsum
Duration of inf	egration
Display area	00:00:00 (0 sec) - 99:59:59 (99 h 59 min 59 sec) ,
	0100:00 - 9999:59 (9999 h 59 min) ,
	010000 - 999999 (999999 h) * Displayed time will transit in series.
Items measured at Demand measurement

Target value (DEIVI _{Target})		
Displayed digit	4-digit	
Unit	m, k, M, G, T	
Display range	0.000mW(VA) - 999.9TW(VA) *according to the selected values	
Predicted value (DEM _{Guess})		
Displayed digit	6-digit	
Unit	m, k, M, G, T (depending on DEM _{Target value})	
Display range	0.0000mW(VA) - 99999.9TW(VA)	
	* Decimal point is dependent on the DEM _{Target} .	
	* "OL" is displayed when the display area is exceeded.	
Equation	$DEM_{com} = \Sigma DEM \times \frac{Demand interval}{\Delta Demand interval}$	
	Guess Elapsed time	
Present value	, Measured demand value (ΣDEM)	

Displayed digit	6-digit , Unit: m, k, M, G, T (depending on DEM _{Target value)}	
Unit	m, k, M, G, T (depending on DEM _{Target value)}	
Display range	0.0000mW(VA) - 99999.9TW(VA)	
	* Decimal point is dependent on the DEM _{Target.}	
	* "OL" is displayed when the display area is exceeded.	
Equation	$\Sigma DEM=$	
	(Integration values of " <i>+WPsum (+WSsum)</i> ")	
	1 hour	
	[^] Interval	

Load factor

Displayed digit	6-digit
Display range	0.00 - 9999.99% * "OL" is displayed when the display area is exceeded.
Equation	$\Sigma DEM / DEM_{Terget}$

Estimation

Displayed digit	6-digit
Display range	0.00 - 9999.99% * "OL" is displayed when the display area is exceeded.
Equation	DEM Guess DEM Terget

Items measured at Harmonics measurement

Meas. system	: Digital PLL synchronization
Meas. method	: Analyze harmonics, and then add and display the inter-harmonics
	components adjacent to the integral order of the analyzed harmonics
Effective frequency range	: 40 - 70Hz
Order analysis	: 1 - 50th
Window width	: 10-cycle at 50Hz, 12-cycle at 60Hz
Window type	: Rectangular
Data analysis	: 2048 points

Analyzing rate : once/ 200ms at 50Hz/60Hz

R. m.s. harmonics voltage Vk [Vrms]

Range	Same as r.m.s. voltage	
Displayed digit	Same as r.m.s. voltage	
Display range	Same as r.m.s. voltage	
	* rate of content 0.0% - 100.0%, percentage against the basic wave	
Measurement	Complied with IEC61000-4-30, IEC61000-4-7, IEC61000-2-4	
system	Analysis window width is 10/12-cycle for 50/60Hz, and the measured values	
	contain the inter-harmonics components adjacent to the analyzed order.	
Accuracy	Complied with IEC61000-2-4 Class3 where 10% - 100% of input range for	
	600V Range.	
	3% or more against 100V of nominal voltage : ±10%rdg	
	Less than 3% against 100V of nominal voltage : nominal voltage ±0.3%	
	1000V Range : ±0.2%rdg±0.2%f.s.	
Equation	$V_{ak} = \sqrt{\sum_{k=1}^{1} (V_a(10k + r)r)^2 + (V_a(10k + r)r)^2}$ Rate of $\frac{V_{ck} \times 100}{100}$	
	c: Measurement channel, k: Harmonics of each order Vr: Real number after Voltage FFT conversion Vi: Imaginary number after Voltage FFT conversion Measurement cycle in this equation is 10-cycle. For 12-cycle measurement,	
	content V_{c1} c: Measurement channel, k: Harmonics of each order Vr: Real number after Voltage FFT conversion Vi: Imaginary number after Voltage FFT conversion Measurement cycle in this equation is 10-cycle. For 12-cycle measurement, "10k+n" should be replaced with "12k+n".	
1P2W-1 to 4	content $V_{r=-1}$ ($V_{c1}(0k+n)r$) $V_{c1}(0k+n)r$) content V_{c1} c: Measurement channel, k: Harmonics of each order Vr: Real number after Voltage FFT conversion Vi: Imaginary number after Voltage FFT conversion Measurement cycle in this equation is 10-cycle. For 12-cycle measurement, "10k+n" should be replaced with "12k+n". V_{1k}	
1P2W-1 to 4 1P3W-1 to 2	$V_{n=-1} = V_{c1} = V_{c1}$ c: Measurement channel, k: Harmonics of each order Vr: Real number after Voltage FFT conversion Vi: Imaginary number after Voltage FFT conversion Measurement cycle in this equation is 10-cycle. For 12-cycle measurement, "10k+n" should be replaced with "12k+n". V_{1k} V_{1k}, V_{2k}	
1P2W-1 to 4 1P3W-1 to 2 3P3W-1 to 2	$V_{n=-1} = V_{c1} = V_{c1}$ c: Measurement channel, k: Harmonics of each order Vr: Real number after Voltage FFT conversion Vi: Imaginary number after Voltage FFT conversion Measurement cycle in this equation is 10-cycle. For 12-cycle measurement, "10k+n" should be replaced with "12k+n". V _{1k} V _{1k} , V _{2k} Line voltage V _{12k} , V _{32k}	
1P2W-1 to 4 1P3W-1 to 2 3P3W-1 to 2 3P3W3A	$V_{n=-1} = V_{c1} = V_{c1}$ c: Measurement channel, k: Harmonics of each order Vr: Real number after Voltage FFT conversion Vi: Imaginary number after Voltage FFT conversion Measurement cycle in this equation is 10-cycle. For 12-cycle measurement, "10k+n" should be replaced with "12k+n". V_{1k} V_{1k} V_{1k}, V_{2k} Line voltage V_{12k}, V_{32k} Line voltage $V_{12k}, V_{23k}, V_{31k}$	

Items measured at Harmonics measurement R.m.s. harmonics current Ak [Arms]

Range	Same as r.m.s. current		
Displayed digit	Same as r.m.s. current		
Display range	Same as r.m.s. current		
Maga avetam	Complied with IEC61000-4-7 IEC61000-2-4		
Meas. system	Analysis window width: 10/12 cycle for 50/60Hz, Measured values contain the		
	inter-harmonics adjacent to the analyzed orders' harmonics		
Accuracy Meets the accuracy specified in IEC61000-2-4 Class3 at 10% - 100%			
	the input range of the measurement range.		
	Less than 10% to max. input range : max value of the range±1.0% +		
	Accuracy of Clamp sensor		
Equation	$A_{ck} = \sqrt{\sum_{n=-1}^{1} (A_c (10k+n)r)^2 + (A_c (10k+n)i)^2} \text{Rate of}_{\text{content}} = \frac{A_{ck} \times 100}{A_{c1}}$		
	c: Measurement channel: A1k, A2k, A3k, A4k, k: Harmonics of each order		
	r: Real number after FFT conversion, i: Imaginary number after FFT conversion		
	Measurement cycle in this equation is 10-cycle. For 12-cycle measurement,		
	"10k+n" should be replaced with "12k+n".		
Harmonics po	wer PK [VV]		
Range	Same as active power		
Displayed digit	Same as active power		
Display range	Same as active power * rate of content 0.0% - 100.0%, percentage against the absolute value of basic wave		
Meas. system	Complied with IEC61000-4-7		
Accuracy	±0.3%rdg±0.2%f.s.+ accuracy of clamp sensor (PF 1, sine wave: 50/60Hz) (Sum represents the total values obtained through the used channels.)		
Equation	$Pc_{k} = V_{c(10k)r} \times A_{c(10k)r} V_{c(10k)i} \times A_{c(10k)i}$ Rate of $= \frac{P_{ck} \times 100}{P_{ck} \times 100}$		
	content P_{c1}		
	c: Measurement channel, k: Harmonics of each order r: Real number after FET conversion, i: Imaginary number after FET conversion		
	Measurement cycle in this equation is 10-cycle. For 12-cycle measurement,		
	"10k" should be replaced with "12k".		
1P2W-1 to 4	$P_{1k}, P_{2k}, P_{3k}, P_{4k}, P_{sumk} = P_{1k} + P_{2k} + P_{3k} + P_{4k}$		
1P3W-1 to 2	$P_{1k}, P_{2k}, P_{sum1k} = P_{1k} + P_{2k}$		
	$P_{3k}, P_{4k}, P_{sum2k} = P_{3k} + P_{4k}$		
	P _{sumk} =P _{sum1k} +P _{sum2k}		
3P3W-1 to 2	$P_{1k}, P_{2k}, P_{sum1k} = P_{1k} + P_{2k}$		
	$P_{3k}, P_{4k}, P_{sum2k} = P_{3k} + P_{4k}$		
	P _{sumk} =P _{sum1k} +P _{sum2k}		
3P3W3A	Phase voltage $P_{1k}:V_1 = (V_{12}-V_{31})/3, P_{2k}:V_2 = (V_{23}-V_{12})/3,$		
	P_{3k} : $V_3 = (V_{31} - V_{23})/3$, $P_{sumk} = P_{1k} + P_{2k} + P_{3k}$		
3P4W	$P_{1k}, P_{2k}, P_{3k}, P_{sumk} = P_{1k} + P_{2k} + P_{3k}$		

Items measured at Harmonics measurement

Harmonics rea	active power Qk [var] (used for internal calculation only)		
Equation	$Pc_k = V_{c(10k)r} \times A_{c(10k)i} V_{c(10k)i} \times A_{c(10k)r}$		
	c: Measurement channel: A1k, A2k, A3k, A4k, k: Harmonics of each order		
	r: Real number after FFT conversion, i: Imaginary number after FFT conversion		
	Measurement cycle in this equation is 10-cycle. For 12-cycle measurement,		
	"10k" should be replaced with "12k".		
1P2W-1 to 4	$Q_{1k}Q_{2k}, Q_{3k}, Q_{4k}, Q_{sumk} = Q_{1k} + Q_{2k} + Q_{3k} + Q_{4k}$		
1P3W-1 to 2	$Q_{1k}, Q_{2k}, Q_{sum1k}=Q_{1k}+Q_{2k}$		
	Q3k, Q4k, Qsum2k=Q3k+Q4k		
	Q _{sumk} =Q _{sum1k} +Q _{sum2k}		
3P3W-1 to 2	$Q_{1k}, Q_{2k}, Q_{sum1k}=Q_{1k}+Q_{2k}$		
	Q3k, Q4k, Qsum2k=Q3k+Q4k		
	Q _{sumk} =Q _{sum1k} +Q _{sum2k}		
3P3W3A	Phase voltage $Q_{1k}:V_1 = (V_{12}-V_{31})/3, Q_{2k}:V_2 = (V_{23}-V_{12})/3,$		
	$Q_{3k}:V_3 = (V_{31}-V_{23})/3, Q_{sumk}=Q_{1k}+Q_{2k}+Q_{3k}$		
3P4W	Q_{1k} , Q_{2k} , Q_{3k} , $Q_{sumk}=Q_{1k}+Q_{2k}+Q_{3k}$		
Harmonics vol	Itage total distortion factor THDVF [%]		
Displayed digit	4-digit		
Display range	0.0% - 100.0%		
Equation	$\sum_{k=1}^{50} (K_k)^2$ c: Meas. channel		
	$\sqrt{\sum_{k=2}^{\infty} (V_{ck})^{k} \times 100}$ V: Harmonics voltage		
	THDVF $c = \frac{V_{c1}}{V_{c1}}$ k: Harmonics of each order		
1P2W-1 to 4	THDVF1		
1P3W-1 to 2	THDVF ₁ , THDVF ₂		
3P3W-1 to 2	Line voltage THDVF ₁₂ , THDVF ₃₂		
3P3W3A	Line voltage THDVF ₁₂ , THDVF ₂₃ , THDVF ₃₁		
3P4W	THDVF ₁ , THDVF ₂ , THDVF ₃		
Harmonics cu	rrent total distortion factor THDAF [%]		
Displayed digit	4-digit		
Display range	0.0% - 100.0%		
Equation	$\sqrt{\frac{50}{50}}$ c: Meas. ch THDAF ₁ , THDAF ₂ ,		
	$\sqrt{\sum_{k=1}^{\infty} (A_{ck})^2 \times 100}$ THDAF ₃ , THDAF ₄		
	THDAF $c = \frac{V k=2}{A}$ A: Harmonics current		
	A c1 k: Harmonics of each order		

Displayed digit	4-digit	
Display range	0.0% - 100.0%	
Equation	$THDVR \ c = \frac{\sqrt{\sum_{k=2}^{50} (V_{ck})^2} \times 100}{\sqrt{\sum_{k=1}^{50} (V_{ck})^2}} $ c: Meas. channel V: Harmonics voltage k: Harmonics of each order	
1P2W-1 to 4	THDVR ₁	
1P3W-1 to 2	THDVR ₁ , THDVR ₂	
3P3W-1 to 2	Line voltage THDVR ₁₂ , THDVR ₃₂	
3P3W3A	Line voltage THDVR ₁₂ , THDVR ₂₃ , THDVR ₃₁	
3P4W	THDVR ₁ , THDVR ₂ , THDVR ₃	
Harmonics cu	rrent total distortion factor THDAR [%]	
Displayed digit	4-digit	
Display range	0.0% - 100.0%	
Equation	$THDAR \ c = \frac{\sqrt{\sum_{k=2}^{50} (A_{ck})^2 \times 100}}{\sqrt{\sum_{k=1}^{50} (A_{ck})^2}} \qquad \begin{array}{cc} \text{c: Meas. ch.} & THDAR_1, THDAR_2, \\ THDAR_3, THDAR_4 \\ \text{A: Harmonics current} \\ \text{k: Harmonics of each order} \end{array}$	
Harmonics vo	ltage phase angle θVk [deg]	
Displayed digit	4-digit	
Display range	0.0° to ±180.0°	
Equation	$\theta V_{ck} = \tan^{-1} \left\{ \frac{V_{ckr}}{-V_{cki}} \right\}$ c: Measurement channel V: Harmonics voltage k: Harmonics of each order r: Real number after FFT conversion, i: Imaginary number after FFT conversion	
1P2W-1 to 4	θV1 κ	
1P3W-1 to 2	$\theta V_{1k}, \theta V_{2k}$	
3P3W-1 to 2	θV_{12k} , θV_{32k} * Line voltages are used.	
3P3W3A	θV_{12k} , θV_{23k} , θV_{31k} * Line voltages are used.	
3P4W	$\theta V_{1k}, \theta V_{2k}, \theta V_{3k}$	

-

Total harmonics current phase angle θAk [deg]

Displayed digit	4-digit	
Display range	0.0° to ±180.0°	
Equation	$A_{l} = \tan^{-1} \left\{ A_{ckr} \right\}$	c: Measurement channel $\theta A_{1k}, \theta A_{2k}, \theta A_{3k}, \theta A_{4k}$
	$\partial A_{ck} = \tan \left\{ \frac{1}{-A_{cki}} \right\}$	A: Harmonics current
		k:Harmonics of each order
		r: Real number after FFT conversion,
		i: Imaginary number after FFT conversion

Harmonics voltage current phase angle difference 0k [deg]

Displayed digit	4-digit	
Display range	0.0° to ±180.0°	
Equation	$\theta_{ck} = \theta A_{ck} - \theta V_{ck}$ c: Measurement channel, k: Harmonics of each order	
1P2W-1 to 4	$\theta_{1k}, \theta_{2k}, \theta_{3k}, \theta_{4k}, \ \theta_{sumk} = \tan^{-1}\left\{\frac{Q_{sumk}}{P_{sumk}}\right\}$	
1P3W(3P3W)-1 to 2	$\theta_{1k}, \theta_{2k}, \ \theta_{sum1k} = \tan^{-1}\left\{\frac{Q_{sum1k}}{P_{sum1k}}\right\}$	
	$\theta_{3k}, \theta_{4k}, \ \theta_{sum 2k} = \tan^{-1}\left\{\frac{Qsum 2k}{Psum 2k}\right\}$	
	$ \Theta_{sumk} = \tan^{-1}\left\{\frac{Q_{sumk}}{P_{sumk}}\right\} $	
3P3W3A(3P4W)-1	$\theta_{1k}, \theta_{2k}, \theta_{3k}, \ \theta_{sumk} = \tan^{-1}\left\{\frac{Q_{sumk}}{P_{sumk}}\right\}$	

Items measured at Power quality measurement Items measured at Power quality measurement

Voltage transi	ient		
Meas. system	Approx. 40.96ksps (every 24µs) gapless event detection (50Hz/60Hz)		
Displayed digit	4-digit		
Effective	50V - 2200V (DC)		
input range			
Display range	50V - 2200V (DC)		
Accuracy	0.5%rdg * at 1000V (DC)		
Input impedance	Αρριοχ. 1.67ΜΩ		
Threshold value	Absolute peak voltage value		
Detection channel (ch)		
1P2W-1 to 4	V ₁		
1P3W-1 to 2	V ₁ , V ₂		
3P3W-1 to 2	Line voltage V ₁₂ , V ₃₂		
3P3W3A	Line voltage V_{12}, V_{23}, V_{31}		
3P4W	V_1, V_2, V_3		
Voltage swell.	, Dip, INT		
Range	Same as r.m.s. voltage		
Displayed digit	Same as r.m.s. voltage		
Effective			
input range	Same as r.m.s. voltage		
Display range	Same as r.m.s. voltage		
Crest factor	Same as r.m.s. voltage		
Input impedance	Same as r.m.s. voltage		
Threshold value	Percentage of the nominal voltage value		
Meas. system	Complied with IEC61000-4-3		
	*r.m.s. values are calculated from one waveform with half-wave overlapping.		
	Swell, dip detection for multi-phase system:		
	INT detection for multi-phase system:		
	Starts when the event starts at all chs. Ends when it terminates at any one of		
	the chs.		
Accuracy	10% - 150% (to 100V or higher nominal voltages) : nominal voltage ±1.0%		
	Out of above range : ±0.4%rdg±0.4%f.s.		
	Errors of event duration measurement at 40 - 70Hz : within 1-cycle		
Detection channel (ch)		
1P2W-1 to 4	V ₁		
1P3W-1 to 2	V ₁ , V ₂		
3P3W-1 to 2	Line voltage V ₁₂ , V ₃₂		
3P3W3A	Line voltage V ₁₂ , V ₂₃ , V ₃₁		
3P4W	V_{1}, V_{2}, V_{3}		

Inrush current

Range	Same as r.m.s. current
Displayed digit	Same as r.m.s. current
Effective input range	Same as r.m.s. current
Display range	Same as r.m.s. current
Crest factor	Same as r.m.s. current
Input impedance	Same as r.m.s. current
Threshold value	Percentage of the measurement range
Meas. system	Calculate r.m.s. values from one waveform with half-wave overlapping.
Accuracy	±0.4%rdg±0.4%f.s.+ accuracy of clamp sensor
Detection channel	A ₁ , A ₂ , A ₃ , A ₄
(ch)	

	hr.
 	-

Displayed	Time left: Counted down time until a Pst calculation completes.	
items	V: r.m.s. voltage per half-wave, 1 sec average	
	Pst(1min): Flicker value for 1 min (Pst ref. value)	
	Pst: Severity of short term flicker (10 min)	
	Plt: Severity of long term flicker (2 hours)	
	Max Pst: Max value of Pst, and time information	
	Max Plt: Max value of Plt, and time information	
	Pst(1min) Latest trend graph (for the recent 120 min)	
	Plt trend graph for the recent 600 hours	
Displayed digit	4-digit, Resolution: log 0.001 - 6400 P.U. in 1024-split	
Ramp model	230VRamp/220VRamp/120VRamp/100VRamp	
Meas. method	Complied with IEC61000-4-30 and IEC61000-4-15 Ed.2	
Accuracy	Pst (max. 20):±10%rdg according to the test method defined by IEC61000-4-15 Ed.2	
	Class F3.	
Equation		
$Pst(1min)_{c}$, Pst_{c}	g=	
$\sqrt{0.0314 \times P_{0.1} + 0.0525 \times P_{1S} + 0.0657 \times P_{3S} + 0.28 \times P_{10S} + 0.08 \times P_{50S}}$		
$V_{1S}=(P_{0.7}+P_{1}+P_{1.5})/3$, $V_{3S}=(P_{2.2}+P_{3}+P_{4})/3$, $V_{10S}=(P_{6}+P_{8}+P_{10}+P_{13}+P_{17})/5$,		
$V_{50S} = (P_{30} + P_{50} + P_{80})/3$ c: Measurement channel		
The 10-min* measurement data is classfied into 1024 classes (0 - 6400P.U.), using the non-linear classification to determine the culamitive probability function (CPE). It will be then corrected by the		
non-linear interpolating method, and do the calculation with the smoothed values. * Pst(1min): 1 min		
2	$\sum_{i} Pst_i^{s}$	
$Plt_C = 3 \times \sqrt{\frac{1}{2}}$	$\frac{1}{N}$ c: Measurement channel, N:12 times(2-hour meas.)	
1P2W-1 to 4	Pst(1min) ₁ , Pst ₁ , Plt ₁	
1P3W-1 to 2	$Pst(1min)_1$, Pst_1 , Plt_1 , $Pst(1min)_2$, Pst_2 , Plt_2	
3P3W-1 to 2	Line voltage Det(1min) - Det - Dit - Det(1min) - Det - Dit-	
	Line voltagePst(11111)12, Pst12, Pst12, Pst(11111)32, Pst32, Pt32	
3P3W3A	Line voltage $Pst(1min)_{12}, Pst_{12}, Plt_{12}, Pst(1min)_{32}, Pst_{32}, Plt_{32}$ Line voltage $Pst(1min)_{12}, Pst_{12}, Plt_{12}, Pst(1min)_{23}, Pst_{23},$	
3P3W3A	Line voltage Pst(1min)12, Pst12, Plt12, Pst(1min)32, Pst32, Plt32 Line voltage Pst(1min)12, Pst12, Plt12, Pst(1min)23, Pst23, Plt23, Pst(1min)31, Pst31, Plt31	

10.4 Specification of Clamp sensor

	<model8128></model8128>	<model8127></model8127>	<model8126></model8126>
Rated current	AC 5Arms [Max. AC50Arms(70.7Apeak)]	AC 100Arms (141Apeak)	AC 200Arms (283Apeak)
Output voltage	0 - 50mV (AC 50mV/AC 5A) [Max.AC 500mV/AC50A]:10mV/A	AC0 - 500mV (AC500mV/AC100A):5mV/A	AC0 - 500mV (AC 500mV/AC200A):2.5mV/A
Measuring range	AC0 - 50Arms	AC0 - 100Arms	AC0 - 200Arms
Accuracy (sine wave input)	±0.5%rdg±0.1mV (50/60Hz) ±1.0%rdg±0.2mV (40Hz - 1kHz)		
Phase characteristics	within ±2.0° (0.5 - 50A/45 - 65Hz)	within ±2.0° (1 - 100A/45 - 65Hz)	within ±1.0° (2 - 200A/45 - 65Hz)
Temp. & humidity range (guaranteed accuracy)	23±5°C, relative humidity 85% or less (no condensation)		
Operating temp. range	0 - 50°C, relative humidity 85% or less (no condensation)		idensation)
Storage temp. range	-20 to 60°C,	relative humidity 85% or less (no co	ondensation)
Allowable input	AC50Arms (50/60Hz)	AC100Arms (50/60Hz)	AC200Arms(50/60Hz)
Output impedance	Approx. 20Ω	Approx. 10Ω	Approx. 5Ω
Location for use		In-door use, altitude 2000m or less	
Applicable standards	IEC 61010-1,IEC 61010-2-032 IEC 61010-1, IEC 61010-2-032 Meas. CAT III (300V), Pollution degree 2 Meas. CAT III (600V), IEC61326 Pollution degree 2 Pollution degree 2		IEC 61010-1, IEC 61010-2-032 Meas. CAT III (600V), Pollution degree 2, IEC61326
Withstand voltage	AC3540V/5 sec. Between Jaws – Enclosure, Enclosure – Output terminal, and Jaws – Output terminal		AC5350V/5 sec. Between Jaws – Enclosure, Enclosure – Output terminal, and Jaws – Output terminal
Insulation		$50M\Omega$ or more/ $1000V$	
resistance	Between Jaws – Enclosu	ire, Enclosure – Output terminal, an	d Jaws – Output terminal
Max conductor size	Approx. ø24	4mm (max.)	Approx. ø40mm (max.)
Dimension	100(L)×60(W)×26(D)mm		128(L)×81(W)×36(D)mm
Cable length	Approx. 3m		
Output terminal		MINI DIN 6PIN	
Weight	Approx. 160g Approx. 260g		Approx. 260g
Accessory	Instruction manual Cable marker		
Optional parts	7146 (Banana ø 4 Adjuster plug), 7185(Extension cable)		

	<model8125></model8125>	<model8124></model8124>	
Rated current	AC 500Arms (707Apeak)	AC 1000Arms (1414Apeak)	
Output voltage	AC0 - 500mV (AC500mV/500A):AC 1mV/A	AC0 - 500mV (AC500mV/1000A):0.5mV/A	
Measuring range	AC0 - 500Arms	AC0 - 1000Arms	
Accuracy (sine wave input)	±0.5%rdg±0.1mV (50/60Hz) ±1.0%rdg±0.2mV (40Hz - 1kHz)	±0.5%rdg±0.2mV (50/60Hz) ±1.5%rdg±0.4mV (40Hz - 1kHz)	
Phase characteristics	within ±1.0° (5 - 500A/45 - 65Hz)	within ±1.0° (10 - 1000A/45 - 65Hz)	
Temp. & humidity range (guaranteed accuracy)	23±5°C, relative humidity 85	23±5°C, relative humidity 85% or less (no condensation)	
Operating temp. range	0 - 50°C, relative humidity 8	5% or less (no condensation)	
Storage temp. range	-20~60°C, relative humidity 8	5% or less (no condensation)	
Allowable input	AC500Arms (50/60Hz)	AC1000Arms (50/60Hz)	
Output impedance	Approx. 2Ω	Approx. 1Ω	
Location for use	In-door use, altitu	ide 2000m or less	
Applicable	IEC 61010-1,IE	EC 61010-2-032	
standards	Meas. CAT III (600V), Pollution degree 2		
)//5 coc	
Withstand voltage	Between Jaws - Enclosure, Enclosure - C	Dutput terminal, and Jaws - Output terminal	
Insulation	50MΩ or more/ 1000V		
resistance	Between Jaws – Enclosure, Enclosure – C	Between Jaws - Enclosure, Enclosure - Output terminal, and Jaws - Output terminal	
Max conductor size	Approx. ø40mm (max.)	Approx. ø68mm (max.)	
Dimension	128(L)×81(W)×36(D)mm	186(L)×129(W)×53(D)mm	
Cable length	Appro	Approx. 3m	
Output terminal	MINI D	IN 6PIN	
Weight	Approx. 260g	Approx. 510g	
Accessory	Instruction manual, Cable marker		
Optional parts	7146 (Banana ø 4 Adjuster plug), 7185(Extension cable)		

	<kew8129></kew8129>	< KEW8130 >	< KEW8133 >	< KEW8135 >
	Discontinued		\bigcirc	
Rated current	300A Range: AC 300 Arms(424Apeak) 1000A Range: AC 1000 Arms(1414Apeak) 3000A Range: AC 3000 Arms(4243Apeak)	AC 1000 Arms (1850Apeak)	AC 3000 Arms (5515A Peak)	AC 50 Arms (92A Peak)
Output voltage	300A Range: AC0 - 500mV(AC500mV/AC 300A):1.67mV/A 1000A Range: AC0 - 500mV(AC500mV/AC1000A):0.5mV/A 3000A Range: AC0 - 500mV(AC500mV/AC3000A):0.167mV/A	ACO - 500mV (AC500mV/AC1000A) :0.5mV/A	ACO - 500mV (AC500mV/AC3000A) :0.167mV/A	ACO - 500mV (AC500mV/AC50A) :10mV/A
Measuring range	300A Range: 30 - 300Arms 1000A Range: 100 - 1000Arms 3000A Range: 300 - 3000Arms	AC0 - 1000Arms	AC0 - 3000Arms	ACO - 50Arms
Accuracy (sine wave input)	± 1.0%rdg (45 - 65Hz) (at the center point)	± 0.8%rdg ± 0.2mV (45 - 65Hz) ± 1.5%rdg ± 0.4mV (40Hz - 1kHz)	± 1.0%rdg ± 0.5mV (45 - 65Hz) ±1.5%rdg±0.5mV (40Hz - 1kHz)	$\begin{array}{l} \pm \ 1.0\% rdg \pm 0.5mV \ (45Hz - 65Hz) \ (0.50A) \\ \pm \ 1.5\% rdg \pm 0.5mV \ (40Hz - 300Hz) \ (0.20A) \\ \pm \ 1.5\% rdg \pm 0.5mV \ (300Hz - 1kHz) \ (0.5A) \end{array}$
Phase characteristics	within ± 1.0° (in each measuring range: 45 - 65Hz)	within ± 2.0 within ± 3.0	° (45 - 65Hz) ° (40 - 1kHz)	within $\pm 3.0^{\circ}$ (45 - 65Hz) within $\pm 4.0^{\circ}$ (40 - 1kHz)
Temp. & humidity range (guaranteed accuracy)	$23 \pm 5^{\circ}$ C, relative humidity 85% or less (no condensation)			
Operating temp. range	-10 - 50°C, relative humidity 85% or less (no condensation)			
Storage temp. range	-20 to (60°C, relative humidity 85%	6 or less (no condensation)	
Allowable input	AC3600Arms (50/60Hz)	AC1300Arms (50/60Hz)	AC3900Arms (50/60Hz)	AC65Arms (50/60Hz)
Output impedance		Approx. 100 Ω	or less	
Location for use		In-door use, altitude 2	2000m or less	
Applicable standards	IEC 61010-1,IEC 61010-2-032 CAT. III (600V) Pollution degree 2 IEC61326	ie Cat. III (60	EC 61010-1,IEC 61010-2-03 00V)/CAT.IV (300V) Pollutio IEC61326	2 n degree 2
Withstand voltage	AC5350V/5 sec Between circuit – sensor	AC5160 Between circ	V/5 sec cuit – sensor	
Insulation resistance	50 Be	50M Ω or more/ 1000V Between circuit – sensor		
Max conductor size	Approx. ø150mm (max)	Approx. ø110mm (max.)	Approx. ø170mm (max.)	Approx. ø75mm (max.)
Dimension	111(L) × 61(W) × 43(D)mm (protrusions are not included)		65(L) × 25(W) × 22(D)mm	
Cable length	Sensor part: Approx. 2m Output cable: Approx. 1m	Sensor part: Approx. 2.7m Output cable: Approx.0.2m		
Output terminal		MINI DIN 6	PIN	
Weight	8129-1: Approx.410g/8129-2: Approx.680g/8129-3: Approx.950g	Approx.180g	Approx.200g	Approx.170g
Accessory	Instruction manual, Output cable (M-7199), Carrying case	Instruction	manual, Cable marker, Cal	rrying case
Optional parts		_		

	<model8141></model8141>	<model8142></model8142>	<model8143></model8143>
	Discontinued product	Discontinued product	Discontinued product
Rated current		AC1000mArms	
Output voltage	٩	C0 - 100mV(AC100mV/AC1000mA	.)
Measuring range		AC0 - 1000mArms	
Accuracy (sine wave input)	±1.0%rdg±0.1mV (50/60Hz) ±2.0%rdg±0.1mV (40Hz - 1kHz)		
Phase characteristics			
Temp. & humidity range (guaranteed accuracy)	23±5°C, relative humidity 85% or less (no condensation)		
Operating temp. range	0 - 50°C, relative humidity 85% or less (no condensation)		
storage temp. range	-20 to 60°C, relative humidity 85% or less (no condensation)		
Allowable input	AC100Arms (50/60Hz)	AC200Arms (50/60Hz)	AC500Arms (50/60Hz)
Output impedance	Approx. 180Ω	Approx. 200Ω	Approx. 120Ω
Location for use		In-door use, altitude 2000m or less	
Applicable standards	IEC 61010-1,IEC 61010-2-032 Meas. CAT III (300V), Pollution degree 2 IEC61326 (EMC standard)		92
Withstand voltage	AC3540V/5 sec Between Jaws – Enclosure, Jaws – Output terminal, and Enclosure – Output terminal		
Insulation resistance	50MΩ or more/ 1000V Between Jaws – Enclosure, Jaws – Output terminal, and Enclosure – Output terminal		
Max conductor size	Approx. ø24mm (max)	Approx. ø40mm (max)	Approx. ø68mm (max)
Dimension	100(L)×60(W)×26(D)mm (protrusions are not included)	128(L)×81(W)×36(D)mm (protrusions are not included)	186(L)×129(W)×53(D)mm (protrusions are not included)
Cable length		Approx. 2m	
Output terminal		MINI DIN 6PIN	
Weight	Approx. 150g	Approx. 240g	Approx. 490g
Accessory		Instruction manual Carrying case	
Optional parts		7146 (Banana ø 4 Adjuster plug) 7185(Extension cable)	

<kew8146></kew8146>	<kew8147></kew8147>	<kew8148></kew8148>		
AC 30Arms (42.4Apeak)	AC 70Arms (99.0Apeak)	AC 100Arms (141.4Apeak)		
AC0 - 1500mV(AC50mV/A)	AC0 - 3500mV(AC50mV/A)	AC0 - 5000mV(AC50mV/A)		
AC0 - 30Arms	AC0 - 70Arms	AC0 - 100Arms		
0 - 15A ±1.0%rdg±0.1mV (50/60Hz) ±2.0%rdg±0.2mV (40Hz - 1kHz) 15 - 30A ±5.0%rdg (50/60Hz) ±10.0%rdg (45 - 1kHz)	0 - 40A ±1.0%rdg±0.1mV (50/60Hz) ±2.0%rdg±0.2mV (40Hz - 1kHz) 40 - 70A ±5.0%rdg (50/60Hz) ±10.0%rdg (45 - 1kHz)	0 - 80A ±1.0%rdg±0.1mV (50/60Hz) ±2.0%rdg±0.2mV (40Hz - 1kHz) 80 - 100A ±5.0%rdg (50/60Hz) ±10.0%rdg (45 - 1kHz)		
0 - 50%	C, relative humidity 85% or less (no conder	isation)		
-20 to 60	°C, relative humidity 85% or less (no conde	ensation)		
AC30Arms (50/60Hz)	AC70Arms (50/60Hz)	AC100Arms (50/60Hz)		
Approx. 90Ω	Approx. 100Ω	Approx. 60Ω		
	In-door use, altitude 2000m or less			
	IEC 61010-1,IEC 61010-2-032 Meas. CAT III (300V) Pollution degree 2 IEC61326			
	AC3540V/5 sec			
	Between Jaws - Enclosure,			
	Enclosure – Output terminal, and			
	Jaws – Output terminal			
$50 M \Omega$ or more/ $1000 V$ Between Jaws – Enclosure, Enclosure – Output terminal, and Jaws – Output terminal				
Approx. ø24mm (max)	Approx. ø40mm (max)	Approx. ø68mm (max)		
100(L)×60(W)×26(D)mm	128(L)×81(W)×36(D)mm	186(L)×129(W)×53(D)mm		
	Approx 2m			
	MINI DIN 6PIN			
Approx. 150a	Approx. 240a	Approx. 510a		
	Instruction manual			
	Cable marker			
	7146 (Banana ø 4 Adjuster plug) 7185(Extension cable)			

11. Troubleshooting

11.1 General troubleshooting

When defect or breakdown of the instrument is suspected, check the following points first. If your problem is not listed in this section, contact your local Kyoritsu distributor.

Symptom	Check
Instrument cannot be powered on.	When operating with an AC power supply:
(Nothing is displayed on the LCD.)	 Power cord is connected firmly and properly?
	 No break in the Power cord?
	 Supply voltage is within the allowable range?
	When operating with batteries:
	 Batteries are installed with observing correct polarity?
	 Size AA Ni-HM batteries are full-charged?
	 Size AA Alkaline batteries are not exhausted?
	If the problem not solved yet:
	 Disconnect the power cord from an AC power source, and
	then remove all the batteries from the instrument. Insert the
	batteries again, and connect the power cord to an AC power
	source. Power on the instrument. If the instrument still does
	not turn on, instrument failure may be suspected.
Any key doesn't work.	 Key lock function is inactivated?
	Check the effective Keys on each Range.
Readings are not stable or	 Frequency at voltage ch1 is within the guaranteed accuracy
Inaccurate.	range? It should be between 40 and 70Hz.
	Voltage test leads and clamp sensors are connected properly?
	• Setting of the instrument and the selected wiring configuration
	are appropriate?
	 Proper sensors are used with proper settings?
	 There is no break in the voltage test leads?
	 Input signal is not interfered?
	 Strong electric magnetic field does not exist in close
	proximity?
	 Measurement environment meets the specification of this
	instrument?
	Check the wiring configuration and the connected sensor.
Incapable of saving data to the	 Check the number of files in the memory.
internal memory.	• If an SD card is inserted in the instrument, remove the card.

Symptom	Check
Data cannot be saved on the SD card.	 SD card is inserted correctly? SD card has been formatted? Is there available free space in a SD card? Check the max number of files or capacity of SD card. Operation of the SD card has been verified? Verify the proper operation of SD card on other well-known hardware.
Download and setting cannot be done via USB communication.	 connection of the USB cable between the instrument and PC. Run the communication application software "KEW Windows for KEW6315" and check the connected devices are displayed or not. If the devices are not displayed, the USB driver might not be installed correctly. Please refer to the installation manual for "KEW Windows for KEW6315" and re-install the USB driver.
At the self-diagnosis, "NG" judgment is given frequently.	If "NG" is given for "SD Card", see the check points for "Data cannot be saved in the SD card." in above column. If "NG" is give for the other items, disconnect the power cord from an AC power source, and then remove all the batteries from the instrument. Insert the batteries again, and connect the power cord to an AC power source, and carry out the self-diagnosis again. If "NG" is still given, instrument failure may be suspected.

11.2 Error messages and actions

Error message may appear on the LCD while using the instrument. Please check the following table if any error message appears, and take action.

Message	Detail & Action
No SD card. Check the amount of free space in the SD card.	 Check the SD card is inserted correctly. See "4.3 Placing/ removing SD card" (P. 33).
Check the amount of free space in the SD card.	• Check the free space on the SD card. If the space is not enough, delete unnecessary files, format the card or use another card. The SD card should be formatted on KEW6315, not on the PC. See " <i>To delete, transfer or format the recorded data</i> " (P. 82).
Failed to detect sensors. Check the connection of the sensor(s).	 Check the connection of current sensor. If any problem is suspected, please do the following checks. Connect the current sensor, for which "NG" is given, to the CH on which another sensor is properly detected. If the result "NG" is given for the same CH, a defect of the instrument is suspected. A defect of sensor is suspected if "NG" is given for the same sensor connected to another CH. If NG result is given, stop using

11.2 Error messages and actions

the instrument or the sensor.

Message	Detail & Action
Battery level is low. Powering off…	 Connect the instrument to an AC power source, or replace the batteries with new ones. * Size AA Alkaline battery (LR6) or fully-charged Size AA Ni-MH battery x 6pcs See "<i>How to install batteries</i>" (P. 31). Check the free space on the internal memory and the number of
Not having free space on the internal memory. Format the memory or delete unnecessary files.	the saved files. Max number of the file that can be saved on the memory is: 3 for measurement data and 8 for the other data. If the free space is not enough, delete unnecessary files, format the memory. See " <i>To delete, transfer or format the recorded data</i> " (P. 82).
Cannot read the setting file. The file may be damaged.	 Try again. If still the setting files are not read; * problems with SD card or KEW6315 are suspected, if the setting files are on the SD card, * problems with KEW6315 are suspected, if the setting files are in the internal memory. If the problem with KEW6315 is suspected, stop using the instrument.
Available memory is low. Check the amount of free space in the SD card and internal memory. There is no available space in the storage area.	 Check the free space and the number of saved files on the SD card and the internal memory. Max number of the file that can be saved on the memory is: 3 for measurement data and 8 for the other data. If the space is not enough, delete unnecessary files, format the card or memory. When using another SD card, it should be formatted on KEW6315, not on the PC. See "<i>To delete, transfer or format the recorded data</i>" (P. 82).
Start time is set in the past. Check the recording start method.	• REC Start is either "Constant rec. / Time period rec." and the time set for REC End is set to the past. Check and modify the time and date. See "(8)/ (9) Setting for recording method" (P. 45).
Failed to start recording.	 Check the "Recording setting" at SET UP menu. See "5.4 Recording setting" (P. 71). Try again. If still a record does not start, there may be a problem with either the SD card or the internal memory. Check which is set as the destination to save the data. If the destination is internal memory, a problem with KEW6315 is suspected. Stop using the instrument in this case.
Cannot change the instrument settings during recording or in stand-by mode.	 Change of setting is not allowed during a record. To change the settings, stop record and confirm "Recording stopped." message appears and then disappears.

Message	Detail & Action
New sensor is detected. Recheck the basic setting for SET UP before measurements.	• The connected Clamp sensors are not the same ones used during the previous test. Modify the settings of clamp sensor directly from the "Basic setting" or press the "Detect" key.
Sensor connection is not correct. Check the connected sensor(s).	• Appropriate current sensor may not be connected to the measure- ment channels. Check the wiring configuration and the connected sensor.
Out of SD card space. Recording will be stopped.	• First, stop the recording. Confirm "Recording stopped." message appears, and then disappears. Backup the data file to PC or any other medias, and then delete files or format. When using another SD card, it should be formatted on KEW6315, not on the PC. See " <i>To delete, transfer or format the recorded data</i> " (P. 82).
Out of internal memory space. Recording will be stopped.	• First, stop the recording. Confirm "Recording stopped." message appears, and then disappears. Backup the data file to PC or SD cards, and then delete files or format. See " <i>To delete, transfer or format the recorded data</i> " (P. 82).

DISTORIBUTOR

Kyoritsu reserves the rights to change specifications or designs described in this manual without notice and without obligations.

KYORITSU ELECTRICAL INSTRUMENTS WORKS, LTD.

2-5-20,Nakane, Meguro-ku, Tokyo, 152-0031 Japan Phone: +81-3-3723-0131 Fax: +81-3-3723-0152 URL: www.kew-ltd.co.jp Factory: Ehime,Japan

www.kew-ltd.co.jp