

<u>สารบัญ</u>		KEW6315
สารบัญ		1
ขั้นตอนก	ารแกะผลิตภัณฑ์ออกจากกล่อง	
คำเตือนผ่	ด้านความปลอดภัย	
บทที่ 1 ภ′	าพรวมของเครื่องมือ	
1.1	ภาพรวมด้านการทำงาน	
1.2	คุณสมบัติ	
1.3	์ แบบร่างโครงสร้าง	
1.4	ขั้นตอนสำหรับการวัด	
บทที่ 2 เฝ้	ค้าโครงเครื่องมือ	
2.1	จอแสดงผล (LCD) / ปุ่ม	
2.2	ตัวเชื่อมต่อ	
2.3	หน้าด้านข้าง	
2.4	สายทดสอบแรงดันไฟฟ้าและเซ็นเซอร์แคลมป์	
บทที่ 3 ก	ารใช้งานขั้นพื้นฐาน	
3.1	การใช้งานหลัก	
3.2	ไอคอนบนจอ LCD	21
3.3	สัญลักษณ์บนจอ LCD	
3.4	้ไฟแบ็คไลต์และการปรับค่าความเปรียบต่าง	
3.5	หน้าจอ	23
	 ชั่วขณะ/รวมยอด/ความต้องการ 	
	● เวกเต _ื อร์	
	 ฐปคลื่น 	
	 การวิเคราะห์ฮาร์โมนิก 	25
	 คุณภาพกำลังไฟ 	
d		26
บทที่ 4 เรื	ริ่มตื่นใช้งาน	
4.1	การเตรียมความพร้อม	
	 การเสแผงขวตออนพุตบนชองเสยบอนพุต	27 ວາມຢູ່
	● ากรอดทุษรองหมายกกษายุมดุขอกแรงดุทางพาแขะเฉทูเฉอรูแษย	ามบ58

<u>KEW6315</u>		สารบัญ
4.2	แหล่งจ่ายไฟ	29
	• แบตเตอรี่	
	 เครื่องหมายแบตเตอรีบนจอ LCD/ ระดับแบตเตอรี 	
	 วิธีการติดตั้งแบตเตอรี	
	 การเชื่อมต่อแหล่งจ่ายไฟ	
10	 พกดแหลงจายเพ 	
4.3	การเล / การถอด SU การด	
	 การเส SD การด 	
	 การถอด SD การด ส่ประการการการการการการการการการการการการการก	
4.4	สายทดสอบแรงดันไฟฟ้าและการเชื่อมต่อเซ็นเซอร์แคลมป์	
4.5	เริ่ม KEW 6315	
	 หน้าจอเริ่มต้น 	
	 ข้อความเตือน 	
4.6	ขันตอนการบันทึก	
	 เริ่มต้นการบันทึก 	
	 สินสุดการบันทึก 	
	 เริ่มต้นการวัดด้วย "Quick start guide" 	
บทที่ 5 ก	ารตั้งค่า	
5.1	รายการการตั้งค่ารายการ	
5.2	การตั้งค่าพื้นฐาน	
	 การตั้งค่าระบบสายไฟ 	49
	 การเชื่อมต่อสายไฟ 	51
	 การตั้งค่าของการวัดแรงดันไฟฟ้า 	53
	• VT/CT	54
	 การตั้งค่าของการวัดกระแสไฟฟ้า 	
	 การตั้งค่าของช่องเสียบอินพุตภายนอก/ ความถี่อ้างอิง 	
5.3	้ การตั้งค่าการวัด	
	 การตั้งค่าการวัดความต้องการ 	
	 เค้าโครงของแนวคิดการวัดความต้องการ 	
	 การตั้งค่าของการวิเคราะห์ฮาร์โมนิก 	63
	 การตั้งค่าขีดจำกัดสำหรับคุณภาพกำลังไฟ (เหตุการณ์) 	65

	• การตั้งค่าตัวกรองสำหรับการวัดการกะพริบ	
	 พาวเวอร์แฟกเตอร์เป้าหมายสำหรับการคำนวณความจุไฟฟ้า 	70
5.4	การตั้งค่าการบันทึก	71
	 การตั้งค่าสำหรับการบันทึกรายการ 	72
	● รายการที่บันทึก	73
	● วิธีการบันทึก	74
	● เวลาบันทึกที่เป็นไปได้	
5.5	การตั้งค่าอื่น ๆ	77
	 การตั้งค่าสภาพแวดล้อมของระบบ 	77
	● การตั้งค่า KEW 6315	
5.6	ข้อมูลที่บันทึกไว้	
	 ้เมื่อต้องการลบ ให้ถ่ายโอน หรือจัดรูปแบบข้อมูลที่บันทึกไว้ 	
	 ประเภทของข้อมูลที่บันทึกไว้ 	
	● KEW 6315 การ [์] ตั้งค่าและการโหลดข้อมูล	
บทที่ 6 ร	ายการที่แสดง	
6.1	ค่าชั่วขณะ "W"	92
	 แสดงรายการของค่าที่วัดได้ 	92
	● ย่อ/ขยายการแสดงผล	
	 การแสดงกราฟแนวโน้ม 	
	 การเปลี่ยนรายการที่แสดงและตำแหน่งการแสดงผล 	
6.2	ค่าแบบรวม "Wh"	100
6.3	ความต้องการ	
	 การแสดงค่าที่วัดได้ 	
	• การเปลี่ยนแปลงช่วงเวลาที่ระบุ	
	 การเปลี่ยนแปลงตามความต้องการ 	
6.4	เวกเตอร์	
6.5	รูปคลื่น	107
6.6	้ ฮาร์โมนิก	
	 การแสดงฮาร์มอนิกบนกราฟแท่ง 	
	 การแสดงรายการฮาร์โมนิก 	112

KEW6315		สารบัญ
6.7	คุณภาพกำลังไฟ	
	ปัจจัยที่ส่งผลทำให้คุณภาพกำลังไฟลดลงและอาการ	
	 แสดงเหตุการณ์ที่บันทึกไว้ 	
	การแสดงค่าการกะพริบที่วัดได้ในรูปแบบรายการ	
	● แสดงกราฟแนวโน้มของ Pst, 1min	
	 การแสดงการปลี่ยนแปลงของ Plt 	
บทที่ 7 ฟั	งก์ชันอื่นๆ	
บทที่ 8 ก	ารเชื่อมต่ออุปกรณ์	
8.1	ถ่ายโอนข้อมูลไปยัง PC	
8.2	การใช้ฟังก์ชั้น Bluetooth®	
8.3	การควบคุมสัญญาณ	
	 การเชื่อมต่อไปยังขั้วอินพุต/เอาต์พุต 	
8.4	การรับพลังงานจากสายที่วัดค่า	
บทที่ 9 ซ	อฟต์แวร์ PC สำหรับการตั้งค่าและการวิเคราะห์ข้อมูล	
บทที่ 10 ·	ข้อมูลจำเพาะ	
10.1	ข้อกำหนดด้านความปลอดภัย	
10.2	ข้อมูลจำเพาะทั่วไป	
10.3	ข้อก่ำหนดจำเพาะของการวัด	
	 รายการที่วัดและจำนวนจุดวิเคราะห์ 	
	 รายการที่วัดได้ด้วยการวัดแบบชั่วขณะ 	
	 รายการที่จะคำนวณ 	
	 รายการที่วัดได้ด้วยการวัดแบบรวมยอด 	
	 รายการที่วัดได้ด้วยการวัดความต้องการ 	
	 รายการที่วัดได้ด้วยการวัดฮาร์โมนิก 	
	 รายการที่วัดได้ด้วยการวัดคุณภาพกำลังไฟ 	
10.4	ข้อมูลจำเพาะของเซ็นเซอร์แคลมป์	
บทที่ 11 ก	ารแก้ไขปัญหา	
11.1	การแก้ไขปัญหาทั่วไป	
11.2	ข้อความแสดงข้อผิดพลาดและการดำเนินการ	

ขั้นตอนการแกะผลิตภัณฑ์ออกจากกล่อง

ขอขอบคุณสำหรับการซื้อเครื่องวิเคราะห์คุณภาพกำลังไฟ "KEW 6315" โปรดตรวจสอบ รายการส่วนประกอบและเครื่องมือก่อนใช้งาน

รายการที่แสดงไว้ด้านล่างรวมอยู่ในชุดมาตรฐานของผลิตภัณฑ์:

1	ชุดอุปกรณ์หลัก	KEW 6315 :1 ชิ้น
2	สายทดสอบแรงดันไฟฟ้า	MODEL7141B :1 ชุด *สีแดง, สีเขียว, สีฟ้า, สีดำ: 1 ชิ้นสำหรับแต่ละสี (พร้อมปากคีบ)
3	สายไฟ	MODEL7170 :1 ชิ้น
4	สายไฟ USB	MODEL7219 :1 ชิ้น
5	คู่มือฉบับย่อ	1ชิ้น
6	CD-ROM	1 ชิ้น
7	แบตเตอรี่	แบตเตอรี่อัลคาไลน์ขนาด AA LR6: 6 ก้อน
8	SD การ์ด	M-8326-02 :1 ชิ้น (2GB)
9	กระเป๋าหิ้ว	MODEL9125 :1 ชิ้น
10	แผงขั้วต่ออินพุต	1 ชิ้น
11	เครื่องหมายสายเคเบิล	8 สี x 4 ชิ้นแต่ละสี (สีแดง, สีน้ำเงิน, สีเหลือง, สีเขียว, สีน้ำตาล, สีเทา, สีดำ, สีขาว)

ชิ้นส่วนอุปกรณ์เสริม

12	เซ็นเซอร์แคลมป์	ขึ้นอยู่กับรุ่นที่ซื้อ
13	คู่มือการใช้งานสำหรับ เซ็นเซอร์แคลมป์	1 ชิ้น
14	กระเป๋าหิ้วแบบแม่เหล็ก	MODEL9132
15	อะแดปเตอร์จ่ายไฟ	MODEL8312 (CAT III 150 V, CAT II 240 V)

<u>ขั้นตอนการแกะผลิตภัณฑ์ออกจากกล่อง</u>

12. เซ็นเซอร์แคลมป์(ขึ้นอยู่กับรุ่นที่ซื้อ)

13. คู่มือการใช้งานสำหรับเซ็นเซอร์แคลมป์

14. กระเป๋าแบบแม่เหล็ก กล่อง

15. อะแดปเตอร์จ่ายไฟ

ประเภท 50A(ø24/75 mm)	M-8128/KEW 8135
ประเภท 100A(ø24 mm)	M-8127
ประเภท 200A(ø40 mm)	M-8126
ประเภท 500A(ø40 mm)	M-8125
ประเภท 1000A(ø68/110 mm)	M-8124/ KEW 8130
ประเภท 3000A(ø150/170 mm)	KEW 8129/ 8133
ประเภท 10A(ø24 mm)	M-8146
ประเภท 10A(ø40 mm)	M-8147
ประเภท 10A(ø68 mm)	M-8148
ประเภท 1A(ø24 mm)	M-8141
ประเภท 1A(ø40 mm)	M-8142
ประเภท 1A(ø68 mm)	M-8143

ผลิตภัณฑ์ที่ยุติการผลิตแล้ว: KEW8129/M-8141/M-8142/M-8143

การจัดเก็บ
 จัดเก็บรายการที่แสดงไว้ด้านล่างหลังจากใช้งาน

 ในกรณีที่พบว่ารายการข้างต้นมีความเสียหายหรือขาดหายไป หรือการพิมพ์ไม่ชัดเจน โปรดติดต่อผู้จัดจำหน่าย KYORITSU ในพื้นที่ของคุณ

KEW6315

<u>KEW6315</u>

คำเตือนด้านความปลอดภัย

KEW6315

คำเตือนด้านความปลอดภัย

อุปกรณ์นี้ได้รับการออกแบบ ผลิต และทดสอบตามมาตรฐาน IEC 61010-1: ข้อกำหนดด้านความปลอดภัยสำหรับอุปกรณ์ วัดอิเล็กทรอนิกส์ และจัดส่งในสภาวะที่ดีที่สุดหลังจากผ่านการทดสอบควบคุมคุณภาพ

้ คู่มือคำแนะนำนี้มีคำเตือนและขั้นตอนความปลอดภัยซึ่งผู้ใช้ต้องปฏิบัติตามเพื่อให้แน่ใจว่าการใช้งานเครื่องมือมีความ ปลอดภัย และเพื่อรักษาเครื่องมือให้อยู่ในสภาวะที่ปลอดภัย ดังนั้น โปรดให้อ่านคู่มือการใช้งานเหล่านี้ก่อนใช้เครื่องมือ

คำเตือน

- สำหรับเกี่ยวกับคู่มือการใช้งาน -
- อ่านและทำความเข้าใจคำแนะนำที่อยู่ในคู่มือเล่มนี้ก่อนใช้เครื่องมือ
- เก็บค่มือเล่มนี้ไว้ในที่ที่เข้าถึงได้สะดวกเพื่อให้สามารถเปิดอ่านค่มือได้อย่างรวดเร็วเมื่อจำเป็น
- ควรใช้อปกรณ์นี้เฉพาะในการใช้งานที่เหมาะสมกับเครื่องมือเท่านั้น
- ทำความเข้าใจและปฏิบัติตามคำแนะนำด้านความปลอดภัยทั้งหมดที่อยู่ในคู่มือเล่มนี้
- อ่านคู่มือฉบับย่อที่แนบมาหลังจากอ่านคู่มือคำแนะนำนี้
- สำหรั้บการใช้งานเซ็นเซอร์แคลมป์ ให้ดูคู่มือของคำแนะนำที่ให้มากับเซ็นเซอร์ ้ การปฏิบัติตามคำแนะนำข้างต้นถือเป็นสิ่งจำเป็น การไม่ปฏิบัติตามคำแนะนำข้างต้นอาจนำไปสู่การบาดเจ็บ เครื่องมือ เสียหาย และ/หรือทำให้อุปกรณ์เสียหายในระหว่างการทดสอบได้ Kyoritsu ้จะไม่รับผิดชอบต่อความเสียหายและการบาดเจ็บใด ๆ ที่เกิดจากการใช้งานในทางที่ผิดหรือไม่ทำตามคำแนะนำในคู่มือ

สัญลักษณ์ 🛆 ที่แสดงบนเครื่องมือ หมายความว่าผู้ใช้ต้องศึกษาส่วนที่เกี่ยวข้องในคู่มือเล่มนี้เพื่อการใช้งานเครื่องมืออย่าง ้ปล[้]อดภัย ถือเป็นสิ่งสำคัญที่ต้องอ่านคำแนะนำเพื่อทำความเข้าใจกับส่วนเนื้อหาในคู่มือที่มีสัญลักษณ์ปรากฏอยู่

\wedge	อันตราย	: หมายถึงสภาวะและการกระทำที่อาจทำให้เกิดการบาดเจ็บสาหัสหรือเสียชีวิตได้
\wedge	คำเตือน	: หมายถึงสภาวะและการกระทำที่สามารถทำให้เกิดการบาดเจ็บสาหัสหรือเสียชีวิตได้
$\overline{\mathbb{A}}$	ข้อควรระวัง	: หมายถึงสภาวะและการกระทำที่สามารถทำให้เกิดการบาดเจ็บหรือเครื่องมือเสียหายได้

หมวดหมู่การวัด

เพื่อให้มั่นใจว่าเครื่องมือวัดจะทำงานอย่างปลอดภัย IEC 61010 จึงได้กำหนดมาตรฐานความปลอดภัยสำหรับ สภาพแวดล้อมทางไฟฟ้าที่หลากหลาย ซึ่งได้รับการจัดหมวดหมู่เป็น O ไปถึง CAT IV และเรียกว่าหมวดหมู่การวัด หมวดหมู่ ที่มีตัวเลขสูงกว่าจะสัมพันธ์กับสภาพแวดล้อมทางไฟฟ้าที่มีพลังงานชั่วขณะมากกว่า ดังนั้นเครื่องมือวัดที่ออกแบบมา สำหรับสภ^าพแวดล้อม CAT III จึงสามารถทนต่อพลังงานชั่วขณะได้มากกว่าเครื่องมือวัดที่ออกแบบมาสำหรับ CAT II

- : วงจรที่ไม่ได้เชื่อมต่อกับแหล่งจ่ายไฟหลักโดยตรง 0
- : วงจรไฟฟ้าของอุปกรณ์ที่เชื่อมต่อกับช่องเสียบ AC โดยใช้สายไฟ CAT II
- : วงจรไฟฟ้าหลักของอุปกรณ์ที่เชื่อมต่อโดยตรงกับแผงการกระจายไฟฟ้าและตัวป้อนจากแผงการ CAT III กระจายไฟฟ้าไปยังช่องเสียบ
- CAT IV : วงจรจากสายจ่ายระบบประธานอากาศไปยังตัวนำประธานเข้าอาคารระบบสายใต้ดิน และไปยังพาวเวอร์มิเตอร์และอุปกรณ์ป้องกันกระแสไฟฟ้าเกินหลัก (แผงการกระจายไฟฟ้า)

<u>คำเตือนเกี่ยวกับความปลอดภัย</u>

\land อันตราย

- ควรใช้อุปกรณ์นี้เฉพาะในการใช้งานหรือสภาวะที่กำหนดเท่านั้น มิฉะนั้น ฟังก์ชันด้านความปลอดภัยที่อยู่
 ในอุปกรณ์จะ ไม่ทำงาน และอาจทำให้อุปกรณ์เสียหาย หรือเกิดการบาดเจ็บสาหัสได้ ตรวจสอบการทำงาน ที่ถูกต้องบนแหล่งที่รู้จักก่อนใช้หรือดำเนินการใด ๆ อันเป็นผลมาจาก การบ่งชี้ของอุปกรณ์
- โดยคำนึงถึงหมวดหมู่การวัดซึ่งวัตถุที่อยู่ระหว่างการทดสอบนั้นอยู่ อย่าทำการวัดในวงจรที่มีค่าศักย์ไฟฟ้า เกินค่าดังต่อไปนี้
- * 300V AC สำหรับ CAT IV, 600V AC สำหรับ CAT III, 1000V AC สำหรับ CAT II
- อย่าพยายามทำการวัดในบริเวณที่มีก๊าซไวไฟ มิฉะนั้น การใช้เครื่องมือนี้อาจทำให้เกิดประกายไฟ ซึ่งสามารถ นำไปสู่การระเบิดได้
- ห้ามใช้เครื่องมือนี้ หากพบว่าพื้นผิวของเครื่องมือเปียกหรือในขณะที่มือของคุณเปียก
- การวัด -
 - อย่าใช้อินพุตเกินค่าสูงสุดที่อนุญาตของช่วงการวัดใด ๆ
 - ห้ามเปิดฝา่ครอบช่องใส่แบตเตอรี่ในระหว่างทำการวัด
- แบตเตอรี่ -
 - อย่าพยายามเปลี่ยนแบตเตอรี่ในระหว่างการวัด
 - ควรใช้แบตเตอรี่จากแบรนด์และประเภทที่สอดดคล้องกัน
- สายไฟ -
 - เชื่อมต่อสายไฟเข้ากับช่องเสียบ
 - ใช้เฉพาะสายไฟที่ให้มาพร้อมกับเครื่องมือนี้
- ตัวเชื่อมต่อแหล่งจ่ายไฟ -
 - ห้ามแตะที่ขั้วต่อแหล่งจ่ายไฟแม้ว่าจะมีฉนวนหุ้มในขณะที่เครื่องกำลังทำงานด้วยแบตเตอรี่
- สายทดสอบแรงดันไฟฟ้า -
 - ใช้เฉพาะสายไฟที่ให้มาพร้อมกับเครื่องมือนี้
 - เลือกและใช้สายทดสอบและฝาปิดที่เหมาะสมกับหมวดหมู่การวัด
 - เมื่อรวมเครื่องมือและสายทดสอบและใช้ร่วมกัน ไม่ว่าจะอยู่ในหมวดหมู่ที่ต่ำกว่าหมวดหมู่ใดก็ตาม ให้ยืนยัน ว่าจะต้องไม่เกินอัตราแรงดันไฟฟ้าที่วัดได้ของสายทดสอบ
 - อย่าเชื่อมต่อสายทดสอบแรงดันไฟฟ้าเว้นแต่จำเป็นสำหรับการวัดพารามิเตอร์ที่ต้องการ
 - เชื่อมต่อสายทดสอบแรงดันไฟฟ้าเข้ากับเครื่องมือก่อน จากนั้นจึงเชื่อมต่อเข้ากับวงจรภายใต้การทดสอบเท่านั้น
 - เก็บนิ้วของคุณไว้ข้างหลัง อุปกรณ์ป้องกันนิ้วมือ และตัวกั้นเสมอในระหว่างการวัด อุปกรณ์ป้องกันนิ้วมือและตัวกั้น เป็นชิ้นส่วนที่ให้การป้องกันไฟฟ้าซ็อต และช่วยรับประกันระยะขั้นต่อของ อากาศที่ต้องการ และ ระยะห่างตามผิวฉนวน
 - ห้ามพยายามถอดสายทดสอบแรงดันไฟฟ้าออกจากตัวเชื่อมต่อของอุปกรณ์ในระหว่างการวัด ในขณะที่ อุปกรณ์มีกระแสไฟฟ้า
 - อย่าแตะสองสายภายใต้การทดสอบด้วยปลายโลหะของสายทดสอบ
 - ห้ามแตะที่ปลายโลหะของสายทดสอบ
 - หยุดใช้สายทดสอบ ถ้าแจ็คเก็ตด้านนอกเสียหาย และมองเห็นโลหะภายในหรือแจ็คเก็ตสี
- เซ็นเซอร์แคลมป์ -
 - ใช้เฉพาะเซ็นเซอร์แคลมป์ที่กำหนดเฉพาะสำหรับเครื่องมือนี้
 - ยืนยันว่าจะต้องไม่เกินพิกัดกระแสไฟฟ้าที่วัดได้ของสายทดสอบและแรงดันไฟฟ้าพิกัดสูงสุด
 - อย่าเชื่อมต่อเซ็นเซอร์แคลุมป์เว้นแต่จำเป็นสำหรับการวัดพารามิเตอร์ที่ต้องการ
 - เชื่อมต่อเซ็นเซอเข้ากับเครื่องมือก่อน จากนั้นจึงเชื่อมต่อเข้ากับวงจรภายใต้การทดสอบเท่านั้น
 - ในระหว่างการวัด ให้เก็บนิ้วมือของคุณอยู่หลังตัวกั้น ตัวกั้น: เป็นชิ้นส่วนที่ให้การป้องกันไฟฟ้าซ็อต และช่วยรับประกันระยะที่สั้นที่สุดที่ต้องการ และระยะห่าง ตามผิวฉนวน

<u>คำเตือนด้านความปลอดภัย</u>

- อย่าถอดเซ็นเซอร์จากตัวเชื่อมต่อของเครื่องมือในขณะที่เครื่องมือกำลังถูกใช้งานอยู่
- เชื่อมต่อกับด้านปลายทางของอุปกรณ์ตัดวงจรเนื่องจากความจุกระแสไฟฟ้าที่ด้านต้นทางมีขนาดใหญ่
- อย่าแตะสองสายภายใต้การทด[ู]สอบด้วยปลายโลหะของสายทด[ู]สอบ

\land ข้อควรระวัง

- ควรใช้ความระมัดระวังเนื่องจากตัวนำภายใต้การทดสอบอาจมีความร้อน
- ห้ามจ่ายกระแสไฟฟ้าหรือแรงดันไฟฟ้าเกินอินพุตสูงสุดที่อนุญาตสำหรับเครื่องมือเป็นเวลานาน
- อย่าจ่ายกระแสไฟฟ้าหรือแรงดันไฟฟ้าให้กับเซ็นเซอร์แคลมป์หรือสายทดสอบแรงดันไฟฟ้าในขณะที่เครื่องมือ ปิดอยู่
- อย่าใช้เครื่องมือในสถานที่ที่มีฝุ่นมากหรือมีเศษวัสดุกระเด็น
- อย่าใช้เครื่องมือภายใต้พายุไฟ^{ู่}ฟ้ากำลังแรงหรือในบ^{ุ่}ริเวณใกล้เคียงกับวัตถุที่ได้รับการจ่ายพลังงาน
- อย่าให้เครื่องมือได้รับการสั้นสะเทือนที่รุนแรงหรือแรงกระแทกจากการตกหล่น
- ใส่ SD การ์ด ลงในสล็อตโดยให้ด้านบนหงายขึ้น หากใส่การ์ดกลับหัว อาจทำให้ SD การ์ดหรือเครื่องมือ เกิดความเสียหายได้
- ในขณะที่ใช้ SD การ์ด อย่าเปลี่ยนหรือถอดการ์ดนั้นออก (สัญลักษณ์ 🗖 จะกะพริบในขณะที่เข้าถึง SD การ์ด) มิฉะนั้นข้อมูลที่บันทึกไว้ในการ์ดอาจสูญหายหรืออุปกรณ์อาจเสียหายได้

- เซ็นเซอร์แคลมป์ -

- อย่างอหรือดึงสายเคเบิลของเซ็นเซอร์แคลมป์
- ประเภทของเซ็นเซอร์กระแสไฟฟ้าที่ใช้สำหรับการวัดควรจะเหมือนกัน

- การจัดการหลังจากใช้งาน -

- ปิดเครื่องมือและปลดสายไฟ สายทดสอบแรงดันไฟฟ้า และเซ็นเซอร์แคลมป์ออกจากเครื่องมือ
- หากต้องการจัดเก็บเครื่องมือไว้และจะไม่ใช้งานเป็นเวลานาน ให้ถอดแบตเตอรี่ออก
- ถอด SD การ์ดออกเมื่อพกพาเครื่องมือ
- อย่าให้เครื่องมือได้รับการสั่นสะเทือนอย่างรุนแรงหรือรับแรงกระแทกขณะพกพาเครื่องมือ
- อย่าให้เครื่องมือโดนแสงแดดโดยตรง และอย่าวางไว้ในพื้นที่ที่มีอุณหภูมิสูง มีความชื้น หรือน้ำค้าง
- ใช้ผ้าชุบน้ำยาทำความสะอาดที่ค่าเป็นกลางหรือน้ำ แล้วบิดหมาดในการท้ำความสะอาดเครื่องมือ อย่าใช้ สารละลายที่มีฤทธิ์กัดกร่อนหรือตัวทำละลาย
- อย่าจัดเก็บเครื่องมือในสภาพที่เปียก

อ่านและทำตามคำแนะนำอย่างระมัดระวัง: 🛆 อันตราย 🛆 คำเตือน \land ข้อควรระวัง และหมายเหตุ () ได้รับการอธิบายไว้ในแต่ละส่วนเนื้อหา

ความหมายของสัญลักษณ์บนเครื่องมือ:

\wedge	ผู้ใช้ต้องอ่านคำอธิบายที่อยู่ในคู่มือการใช้งาน
	เครื่องมือที่มีฉนวนสองชั้นหรือฉนวนเสริม
~	AC
_	ขั้วสายดิน (ทำงานได้)

<u>1.2 คุณสมบัติ</u>

1.2 คุณสมบัติ

นี่คือเครื่องวิเคราะห์คุณภาพกำลังไฟแบบแคลมป์ที่สามารถใช้กับระบบสายไฟต่างๆ สามารถใช้สำหรับการวัดค่า ชั่วขณะ/การวัดแบบรวมยอด/การวัดความต้องการอย่างง่ายๆ และยังใช้สำหรับการวิเคราะห์ฮาร์โมนิกและ เหตุการณ์ที่เกี่ยวข้องกับคุณภาพกำลังไฟ และสำหรับการจำลองการแก้ไขพาวเวอร์แฟกเตอร์ด้วยชุดตัวเก็บประจุ นอกจากนี้ยังสามารถแสดงรูปคลื่นและเวกเตอร์ของแรงดันและกระแสได้ สามารถบันทึกข้อมูลลงใน SD การ์ด หรือในหน่วยความจำภายใน และสามารถถ่ายโอนไปยังพีซีผ่าน USB หรือแบบเรียลไทม์ผ่านการสื่อสาร Bluetooth®

โครงสร้างเพื่อความปลอดภัย

ออกแบบมาเพื่อให้เป็นไปตามมาตรฐานความปลอดภัยระหว่างประเทศ IEC 61010-1 CAT IV 300 V/ CAT III 600 V/ CAT II 1000 V.

การวิเคราะห์คุณภาพกำลังไฟ

KEW 6315 ได้รับการออกแบบเพื่อให้เป็นไปตามมาตรฐานระหว่างประเทศ IEC61000-4-30 Class S และสามารถวัด ความถี่และ r.m.s. แรงดันไฟฟ้าที่มีความแม่นยำสูงและยังสามารถวิเคราะห์ฮาร์โมนิกได้ ยิ่งไปกว่านั้น ยังสามารถวัด การเกิน การลดลง การขัดจังหวะ ภาวะชั่วคราว กระแสไฟไหลเข้า และการกะพริบของแรงดันไฟฟ้าโดยไม่มีช่องว่าง ทั้งหมดในคราวเดียวได้

การวัดกำลังไฟ

KEW 6315 วัดกำลังไฟฟ้าที่ใช้งาน/กำลังไฟฟ้าปรากฏ/ พลังงานไฟฟ้า พาวเวอร์แฟกเตอร์, r.m.s., กระแสไฟฟ้า มุมเฟส และกระแสไฟฟ้าเป็นกลางพร้อมกันได้

การกำหนดค่าการเดินสายไฟ

KEW 6315 สนับสนุน: เฟสเดียว 2 สาย (4 ระบบ), เฟสเดียว 3 สาย (2 ระบบ), สามเฟส 3 สาย (2 ระบบ) และสามเฟส 4 สาย

การวัดความต้องการ

สามารถตรวจสอบการใช้ไฟฟ้าได้อย่างง่ายดายเพื่อไม่ให้เกินค่าความต้องการสูงสุดเป้าหมาย

จอแสดงผลรูปคลื่น/เวกเตอร์

แรงดันไฟฟ้าและกระแสไฟฟ้าสามารถแสดงได้โดยรูปคลื่นหรือเวกเตอร์

การบันทึกข้อมูล

KEW 6315 ถูกสร้างขึ้นพร้อมฟังก์ชันการบันทึกที่มีช่วงการบันทึกที่กำหนดไว้ล่วงหน้า สามารถบันทึกข้อมูลได้ด้วยการ <u>ดำเนินการด้วยตนเอง ห</u>รือโดยการระบุวันที่และเวลา สามารถบันทึกข้อมูลหน้าจอได้โดยใช้ 'ฟังก์ชั่นพิมพ์หน้าจอ'

ระบบแหล่งจ่ายไฟแบบคู่

KEW 6315 ทำงานได้ทั้งด้วยการใช้แหล่งจ่ายไฟ AC หรือแบตเตอรี่ สามารถใช้แบตเตอรี่เซลล์แห้งอัลคาไลน์ขนาด AA และแบตเตอรี่ชาร์จ ได้ AA Ni-MH ได้ ในการชาร์จแบตเตอรี่แบบชาร์จได้ขนาด AA Ni-MH ใหม่ ให้ใช้เครื่องชาร์จ ที่ผลิตโดยบริษัทที่ผลิตแบตเตอรี่นั้น ในกรณีที่เกิดการขัดจังหวะการจ่ายไฟขณะทำงานโดยใช้แหล่งจ่ายไฟ AC แบตเตอรี่ในเครื่องมือจะคืนพลังงานให้กับเครื่องมือโดยอัตโนมัติ

จอแสดงผลขนาดใหญ่

จอแสดงผลสี TFT พร้อมหน้าจอขนาดใหญ่

การออกแบบที่น้ำหนักเบาและกะทัดรัด

ประเภทเซ็นเซอร์แคลมป์ กา่รออกแบบขนาดกะทัดรัดและน้ำหนักเบา

แอปพลิเคชัน

้ข้อมูลใน SD การ์ดหรือหน่วยความจำภายในสามารถบันทึกลงใน PC ผ่านทาง USB ได้ การวิเคราะห์ข้อมูลและการตั้ง ค่าเครื่องมือที่ดาวน์โหลดมาสามารถทำได้โดยการใช้ซอฟต์แวร์พิเศษ "KEW Windows for KEW6315" การสื่อสารแบบเรียลไทม์กับอุปกรณ์ Android มีให้บริการผ่าน Bluetooth®.

ฟังก์ชันอินพุต/เอาต์พุตแบบแอนะล็อก

สัญญาณแอนาล็อกจากเทอร์โมมิเตอร์หรือเซ็นเซอร์วัดแสงสามารถวัดพร้อมกันกับข้อมูลกำลังไฟฟ้าผ่านอินพุต แอนาล็อก 2 ช่อง (แรงดันไฟฟ้า DC) เมื่อมีเหตุการณ์ใดๆ ที่เกี่ยวข้องกับคุณภาพกำลังไฟเกิดขึ้น สามารถส่ง สัญญาณไปยังอุปกรณ์แจ้งเตือนผ่านเอาต์พุตดิจิทัลตัวเดียว

การกำหนดค่าการเดินสา	ยไฟ	ขั้วอินพุตแรงดันไฟฟ้า AC	ขั้วอินพุตกระแสไฟฟ้า*
เฟสเดียว 2 สาย (1 ระบบ)	1P2W×1	VN, V1	A1
เฟสเดียว 2 สาย (2 ระบบ)	1P2W×2	VN, V1	A1, A2
เฟสเดียว 2 สาย (3 ระบบ)	1P2W×3	VN, V1	A1, A2, A3
เฟสเดียว 2 สาย (4 ระบบ)	1P2W×4	VN, V1	A1, A2, A3, A4
เฟสเดียว 3 สาย (1 ระบบ)	1P3W×1	VN, V1, V2	A1, A2
เฟสเดียว 3 สาย (2 ระบบ)	1P3W×2	VN, V1, V2	A1, A2, A3, A4
สามเฟส 3 สาย (1 ระบบ)	3P3W×1	VN, V1, V2	A1, A2
สามเฟส 3 สาย (2 ระบบ)	3P3W×2	VN, V1, V2	A1, A2, A3, A4
สามเฟส 3 สาย 3A	3P3W3A	V1, V2, V3	A1, A2, A3
สามเฟส 4 สาย	3P4W×1	VN, V1, V2, V3	A1, A2, A3

* การวัดค่า r.m.s. ค่าและฮาร์โมนิกสามารถทำได้ที่ขั้วต่อกระแสไฟฟ้า ซึ่งไม่ได้ใช้สำหรับการเชื่อมต่อสายไฟ * ประเภทของเซ็นเซอร์กระแสไฟฟ้าที่ใช้สำหรับการวัดควรจะเหมือนกัน

<u>3.2 ไอเ</u>	คอนบนจอ LCD		KEW6315		
3.2	ไอคอนบนจอ LCD				
	ไอคอน สถานะ				
		KEW 6315 เมื่อทำงานด้วยแบตเตอรี่ ไอคอนนี้อาจแตกต่างกัน 4 ขั้นตอนตามสภาวะ พลังงานของแบตเตอรี่			
	-	KEW 6315 เมื่อทำงานด้วยแหล่งจ่ายไฟ AC			
	357	กำลังอัปเดตการแสดงผล			
		ปุ่มถูกล็อก			
	a ijo	ออดปิด			
		ตั้งค่า SD การ์ดแล้วและพร้อมใช้งาน			
		กำลังเข้าถึงข้อมูลบน SD การ์ด			
		เนื้อที่ว่างที่ใช้ได้ใน SD การ์ดไม่เพียงพอ			
		ไม่สามารถเข้าถึง SD การ์ดได้			
		หน่วยความจำภายในพร้อมใช้งาน * ไอคอนนี้จะแสดงขึ้นเมื่อการวัดได้เริ่มต้นโดยไม่มี SD การ์ด			
	-	กำลังบันทึกข้อมูลในหน่วยความจำภายใน			
	.	พื้นที่ว่างที่ใช้ได้ในหน่วยความจำภายในมีไม่เพียงพอ			
	UWAIT	โหมดสแตนด์บาย			
	OREC	กำลังบันทึกข้อมูลที่วัดได้			
	FULD	ความจุของการบันทึกสื่อเต็ม	_		
	Ø	USB พร้อมใช้งาน			
	8	Bluetooth® พร้อมใช้งาน			

<u>3.3 สัญลักษณ์บนจอ LCD</u>

<u>KEW6315</u>

3.3 สัญลักษณ์บนจอ LCD

V*1	แรงดันไฟฟ้าเฟส	VL*1	แรงดันไฟฟ้าของสาย	А	กระแสไฟฟ้า
Ρ	+ การใช้ แรงดันไฟฟ้า การนำมาใช้ ที่ใช้งาน ₋ ใหม่	Q	+ ล้าหลัง แรงดันไฟฟ้า สูญเสีย - นำหน้า	S	กำลังไฟฟ้าปรากฏ
PF	พาวเวอร์ + ล้าหลัง แฟกเตอร์ ₋ นำหน้า	f	ความถี่		
DC1	แรงดันไฟฟ้าอินพุตแบบ แอนะล็อกที่ 1ch	DC2	แรงดันไฟฟ้าอินพุตแบบ แอนะล็อกที่ 2ch		
An*2	กระแสไฟฟ้าเป็นกลาง	PA*3	+ ล้าหลัง มุมเฟส - นำหน้า	C*3	การคำนวณความจุไฟฟ้า
WP+	พลังงานของกำลังไฟที่ใช้ งานอยู่ (การใช้)	WS+	พลังงานของกำลังไฟปรากฏ (การใช้)	WQi+	พลังงานของกำลังไฟที่ สูญเสีย (ล้าหลัง)
WP-	พลังงานของกำลังไฟที่ใช้ งานอยู่ (นำมาใช้ใหม่)	WS-	พลังงานของกำลังไฟปรากฏ (นำมาใช้ใหม่)	WQc+	พลังงานของกำลังไฟที่ สูญเสีย (นำหน้า)
THD	ปัจจัยการบิดเบือนผลรวม แรงดันไฟฟ้า/กระแสไฟฟ้า				
Pst (1min)	การกะพริบของแรงดันไฟฟ้า (1 นาที)	Pst	แรงดันไฟฟ้าสั่นไหวในระยะสั้น	Plt	แรงดันไฟฟ้าสั่นไหวในระยะ ยาว

^{*1} หน้าจอ W: การแสดง V และ VL สามารถ "ปรับแต่งได้" เมื่อเลือก "3P4W"

^{*2} หน้าจอ W: "An" จะแสดงเฉพาะเมื่อ "3P4W" ถูกเลือก

^{*3} หน้าจอ W: การแสดง PA และ C สามารถ "ปรับแต่งได้"

3.4 ไฟแบ็คไลต์และการปรับค่าความเปรียบต่าง

กดปุ่ม '﴾" LCD ค้างไว้อย่างน้อย 2 วินาทีเพื่อแสดงแถบเลื่อนเพื่อปรับความสว่างของไฟแบ็คไลต์และความเปรียบต่าง ของจอแสดงผล ใช้ปุ่ม <mark>เคอร์เซอร์</mark> เพื่อเลื่อนเคอร์เซอร์บนแถบเพื่อทำการปรับ กดปุ่ม <mark>ENTER</mark> และออกจากโหมดการปรับ กดปุ่ม <mark>ESC</mark> หรือ LCD อีกครั้งเพื่อยกเลิกการปรับและออกจากโหมดการปรับ

<u>การใส่แผงขั้วต่ออินพูตบนช่องเสียบอินพูตl</u>

4 เริ่มต้นใช้งาน

4.1 การเตรียมความพร้อม การใส่แผงขั้วต่ออินพุตบนช่องเสียบอินพุต

มีแผงขั้วต่ออินพุตหกแผงให้มาพร้อมกับเครื่องมือนี้ เลือกแผงใดแผงหนึ่งที่ตรงกับสีสายไฟมาตรฐานที่ใช้เครื่องมือ ใส่แผ่น ที่เทอร์มินัลอินพุตสังเกตทิศทาง

* ทำความสะอาดช่องเสียบอินพุตก่อนใส่แผงและยืนยันว่าไม่เปียก

แผงขั้วต่ออินพุต

	VN	V1/A1	V2/A2	V3/A3	A4
ประเภท 1	สีน้ำเงิน	สีแดง	สีเขียว	สีดำ	สีเหลือง
ประเภท 2	สีน้ำเงิน	สีน้ำตาล	สีดำ	สีเทา	สีเหลือง
ประเภท 3	สีดำ	<mark>สีเหลือง</mark>	สีเขียว	สีแดง	สีขาว
ประเภท 4	สีน้ำเงิน	สีดำ	สีแดง	สีขาว	สีเหลือง
ประเภท 5	สีขาว	สีดำ	สีแดง	สีน้ำเงิน	สีเหลือง
ประเภท 6	สีดำ	สีแดง	สีเหลือง	สีน้ำเงิน	สีขาว

การติดเครื่องหมายกับสายทดสอบแรงดันไฟฟ้าและเซ็นเซอร์แคลมป์

การติดเครื่องหมายกับสายทดสอบแรงดันไฟฟ้าและเซ็นเซอร์แคลมป์

้ติดเครื่องหมายไว้ที่ปลายทั้งสองด้านของสายทดสอบแรงดันไฟฟ้าและเซ็นเซอร์แคลมป์ที่สอดคล้องกับขั้วต่ออินพุต * เครื่องหมายที่ให้มา 32 ชิ้นรวมทั้งหมด: 4 ชิ้น แต่ละสี (สีแดง, สีน้ำเงิน, สีเหลือง, สีเขียว, สีน้ำตาล, สีเทา, สีดำ, สีขาว)

เครื่องหมาย (รวม 32 ชิ้น)

ติดเครื่องหมายกับปลายทั้งสองของสายทดสอบแรงดันไฟฟ้า

<u>แบตเตอรี่</u>

4.2 แหล่งจ่ายไฟ แบตเตอรี่

KEW 6315 ทำงานโดยใช้แหล่งจ่ายไฟ AC หรือแบตเตอรี่ สามารถวัดค่าได้ในกรณีที่ไฟฟ้า AC ขัดข้อง โดยแบตเตอรี่ที่ ติดตั้งในเครื่องมือจะกู้คืนพลังงานให้กับเครื่องมือโดยอัตโนมัติ สามารถใช้แบตเตอรี่เซลล์แห้งขนาด AA อัลคาไลน์ (LR6) หรือขนาดแบตเตอรี่ AA Ni-MH ได้ทั้งคู่ หากต้องการชาร์จแบตเตอรี่แบบชาร์จได้ใหม่ ให้ใช้เครื่องชาร์จที่ผลิตโดยบริษัท ที่ผลิตแบตเตอรี่นั้น KEW 6315 ไม่สามารถชาร์จแบตเตอรี่

* แบตเตอรี่เซลล์แห้งอัลคาไลน์ขนาด AA (LR6) จะจัดส่งมาให้เป็นอุปกรณ์เสริม

\land อันตราย

- ห้ามเปิดฝาครอบช่องใส่แบตเตอรี่ในระหว่างทำการวัด
- ควรใช้แบตเตอรี่จากแบรนด์และประเภทที่สอดดคล้องกัน
- ห้ามแตะที่ขั้วต่อแหล่งจ่ายไฟแม้ว่าจะมี ฉนวนหุ้มในขณะที่เครื่องกำลังทำงานด้วยแบตเตอรี่

\land คำเตือน

 ตรวจสอบให้แน่ใจว่าได้ถอดสายไฟ สายทดสอบแรงดันไฟฟ้า และเซ็นเซอร์แคลมป์ออกจากเครื่องมือแล้ว และปิดอุปกรณ์แล้วเมื่อเปิดฝาครอบช่องใส่แบตเตอรี่เพื่อเปลี่ยนแบตเตอรี่

\land ข้อควรระวัง

- ห้ามใส่แบตเตอรี่ใหม่และเก่าปนกัน
- ติดตั้งแบตเตอรี่โดยหันขั้วให้ถูกต้องตามที่ทำเครื่องหมายไว้ภายในพื้นที่ช่องใส่แบตเตอรี่

แบตเตอรี่ไม่ได้ใส่ไว้ในเครื่องมือ ณ เวลาที่ซื้อ โปรดใส่แบตเตอรี่ที่ให้มาก่อนที่จะเริ่มใช้เครื่องมือ พลังงานแบตเตอรี่จะถูกใช้ แม้ว่าเครื่องมือจะปิดอยู่ก็ตาม หากต้องการจัดเก็บเครื่องมือไว้และจะไม่ใช้งานเป็นเวลานาน ให้ถอดแบตเตอรี่ทั้งหมดออก เมื่อเครื่องมือใช้พลังงานจากแหล่งจ่ายไฟ AC เครื่องมือจะไม่ทำงานโดยใช้แบตเตอรี่ <u>หากแหล่งจ่ายไฟ AC ขัดข้องและไม่ได้ใส่แบตเตอรี่ เครื่องมือจะปิดและข้อมูลทั้งหมดอาจสญหายได้</u>

- ยืนยันว่าอุปกรณ์ปิดอยู่ จากนั้นเชื่อมต่อสายไฟ
- เชื่อมต่อสายไฟเข้ากับเครื่องมือก่อน ควรเชื่อมต่อสายไฟอย่างแน่นหนา
- อย่าพยายามทำการวัดหากสังเกตเห็นสภาวะที่ผิดปกติใด ๆ เช่น ฝาครอบที่แตกหักและชิ้นส่วนโลหะโผล่ออกมา
- เมื่อไม่ได้ใช้งานเครื่องมือ ให้ถอดสายไฟออกจากช่องเสียบ
- เมื่อถอดปลั๊กสายไฟออกจากช่องเสียบซ็อกเก็ตหลัก ให้ถอดปลั๊กออกก่อน และไม่ดึงที่สายไฟ

ทำตามขั้นตอนด้านล่างและเชื่อมต่อสายไฟ

1 ยืนยันว่าเครื่องมือปิดอยู่

KEW6315

- เชื่อมต่อสายไฟเข้ากับตัวเชื่อมต่อกำลังไฟบนอุปกรณ์
- 3 * ต่อปลายอีกด้านของสายไฟเข้ากับช่องเสียบ

* การเริ่มต้น KEW 6315 จะเกิดขึ้น 2 วินาทีหลังจากที่เชื่อมต่อกับแหล่งจ่ายไฟ ปุ่ม 🎯 จะใช้ไม่ได้ในช่วงเวลานี้

พิกัดแหล่งจ่ายไฟ

พิกัดแหล่งจ่ายไฟเป็นดังนี้

แรงดันไฟฟ้าจ่ายตามพิกัด	100 ถึง 240 V AC (±10%)	
ความถี่ของแหล่งจ่ายไฟตามพิกัด	45 ถึง 65 Hz	
การใช้พลังงานสูงสุด	7 VA สูงสุด	

4.3 การใส่/ การถอด SD การ์ด

\rm 🕑 ตรวจสอบจุดต่อไปนี้ก่อนใช้ SD การ์ด

\land ข้อควรระวัง

- ทำตามคำแนะนำที่อธิบายไว้ใน "การใส่ SD การ์ด" และใส่ SD การ์ดลงในช่อง โดยหงายด้านบนขึ้น หากใส่การ์ดกลับหัว อาจทำให้ SD การ์ดหรือเครื่องมือเกิดความเสียหายได้
- ในขณะที่ใช้ SD การ์ด อย่าเปลี่ยนหรือถอดการ์ดนั้นออก (สัญลักษณ์ 🎑 จะกะพริบในขณะที่เข้าถึง SD การ์ด) มิฉะนั้น ข้อมูลที่บันทึกไว้ในการ์ดอาจสูญหายหรืออุปกรณ์อาจเสียหายได้
- ตัวบ่งชี้ " **OREO** " กะพริบในระหว่างการบันทึก อย่าถอด SD การ์ดออก มิฉะนั้น ข้อมูลที่บันทึกไว้หรือเครื่องมือ

อาจเสียหาย อย่าถอดการ์ดออกจนกว่าการบันทึกจะเสร็จสิ้น และและข้อความป๊อปอัป "Stop recording." หายไป

หมายเหตุ:

- จะต้องฟอร์แมต SD การ์ดที่ซื้อใหม่ใน KEW 6315 ก่อนใช้งาน ข้อมูลอาจถูกบันทึก ไม่สำเร็จใน SD การ์ดที่ฟอร์แมตด้วยพีซี PC สำหรับรายละเอียด โปรดดู "ฟอร์แมต" (หน้า 86) ในคู่มือเล่มนี้
- หากใช้ SD การ์ดบ่อยเป็นเวลานาน หน่วยความจำแฟลชอาจหมดลงและอาจไม่สามารถบันทึกข้อมูลเพิ่มเติมลงในการ์ดได้ ในกรณีดังกล่าว กรุณาเปลี่ยนการ์ดนี้ด้วยการ์ดอันใหม่
- ข้อมูลใน SD การ์ดอาจเสียหายหรือสูญหายโดยอุบัติเหตุหรือจากความล้มเหลว ขอแนะนำให้สำรองข้อมูลที่บันทึกไว้เป็น ระยะ ๆ Kyoritsu จะไม่รับผิดชอบต่อการสูญหายของข้อมูล หรือความเสียหายหรือการสูญเสียอื่นใด

การใส่ SD การ์ด:

1 เปิดฝาครอบตัวเชื่อมต่อ

2

- ใส่ SD การ์ดลงในช่องเสียบ SD การ์ดโดยหงายด้านบนขึ้น
- 3 จากนั้นปิดฝาครอบ โปรดใช้เครื่องมือที่มีฝาครอบตัวเชื่อมต่อปิดไว้ เว้นเสียแต่ว่าไม่จำเป็น

การถอด SD การ์ด:

- 1 เปิดฝาครอบตัวเชื่อมต่อ
- 2 ค่อย ๆ กด SD การ์ดเข้าไปด้านใน จากนั้นการ์ดจะออกมา
- 3 นำการ์ดออกช้า ๆ
- 4 จากนั้นปิดฝาครอบ โปรดใช้เครื่องมือที่มีฝาครอบตัวเชื่อมต่อปิดไว้ เว้นเสียแต่ว่าไม่จำเป็น

ฝาครอบตัวเชื่อมต่อ
4.4 สายทดสอบแรงดันไฟฟ้าและการเชื่อมต่อเซ็นเซอร์แคลมป์

ตรวจสอบสิ่งต่อไปนี้ก่อนที่จะเชื่อมต่อสายทดสอบและเซ็นเซอร์

📐 อันตราย

- ใช้เฉพาะสายวัดทดสอบแรงดันไฟฟ้าที่มาพร้อมกับเครื่องมือนี้เท่านั้น
- ใช้เซ็นเซอร์แคลมป์เฉพาะสำหรับเครื่องมือนี้ และยืนยันว่าไม่เกินพิกัดกระแสไฟฟ้าการวัดของเซ็นเซอร์แคลมป์
- อย่าเชื่อมต่อสายวัดทดสอบแรงดันไฟฟ้าหรือเซ็นเซอร์แคลมป์ทั้งหมด เว้นแต่จำเป็นสำหรับการวัดพารามิเตอร์ที่ต้องการ
- เชื่อมต่อสายวัดทดสอบและเซ็นเซอร์เข้ากับเครื่องมือก่อน จากนั้นจึงเชื่อมต่อเข้ากับวงจรภายใต้การทดสอบเท่านั้น
- ห้ามถอดสายทดสอบแรงดันไฟฟ้าและเซ็นเซอร์ขณะใช้งานเครื่องมือ
- เก็บมือและนิ้วของคุณไว้ด้านหลังอุปกรณ์ป้องกันนิ้วมือและตัวกั้นในระหว่างการวัดเสมอ

🔪 คำเตือน

- ยืนยันว่าอุปกรณ์ปิดอยู่ จากนั้นเชื่อมต่อสายไฟ
- เชื่อมต่อสายไฟเข้ากับเครื่องมือก่อน ควรเชื่อมต่อสายไฟอย่างแน่นหนา
- หยุดใช้สายทดสอบ ถ้าแจ็คเก็ตด้านนอกเสียหาย และมองเห็นโลหะภายในหรือแจ็คเก็ตสี

ปฏิบัติตามขั้นตอนด้านล่างและเชื่อมต่อสายทดสอบแรงดันไฟฟ้าและเซ็นเซอร์แคลมป์

- 1 ยืนยันว่าเครื่องมือปิดอยู่
- 2 เชื่อมต่อสายทดสอบแรงดันไฟฟ้าที่เหมาะสมเข้ากับขั้วอินพุตแรงดันไฟฟ้า AC บนอุปกรณ์
- 3 เชื่อมต่อเซ็นเซอร์แคลมป์ที่เหมาะสมกับขั้วอินพุตกระแสไฟฟ้าบนเครื่องมือ จับคู่ทิศทางของเครื่องหมายลูกศรที่ระบุบนขั้วต่อเอาต์พุตของเซ็นเซอร์แคลมป์และเครื่องหมายบนขั้วต่อ อินพุตกระแสไฟฟ้าบนเครื่องมือ

จำนวนสายวัดทดสอบแรงดันไฟฟ้าและเซ็นเซอร์แคลมป์ที่จะใช้จะแตกต่างกัน ขึ้นอยู่กับการกำหนดค่าการเดินสายภายใต้ การทดสอบ สำหรับรายละเอียดเพิ่มเติม "*โปรดดูที่ไดอะแกรมการเดินสายไฟ*" (ห**น้า 50**) ในคู่มือเล่มนี้

KEW6315

เริ่ม KEW 6315 4.5

หน้าจอเริ่มต้น

ึกดปุ่ม <mark>เปิด-ปิด</mark> ค้างไว้จนกระทั่งหน้าจอต่อไปนี้แสดงขึ้นบนจอ LCD เมื่อต้องการปิดเครื่องมือ ให้กดปุ่ม <mark>เปิด-ปิด</mark> ด้างไว้อย่างน้อย 2 วินาที

1 ชื่อรุ่นและเวอร์ชันซอฟต์แวร์จะแสดงขึ้นเมื่อเปิดสวิตช์เครื่องมือ หยุดการใช้เครื่องมือถ้าเครื่องไม่ได้เริ่มทำงานอย่างถูกต้องและอ้างอิงถึง **"บทที่ 11 การแก้ไขปัญหา" (หน้า 157)** ในคู่มือการใช้งานนี้

2 ถ้านี่ไม่ใช่ครั้งแรกที่เริ่มการทำงานของเครื่องมือ หน้าจอที่แสดงครั้งสุดท้ายจากการทำงานครั้งก่อนจะปรากฏขึ้น

ข้อความเตือน

หากเซ็นเซอร์แคลมป์ที่เชื่อมต่ออยู่ไม่เหมือนกับที่ใช้ในการทดสอบครั้งก่อน รายการเซ็นเซอร์ที่เชื่อมต่อ ้จะแสดงเป็นเวลา 5 วินาที แต่การตั้งค่าจะไม่ได้รับการอัปเดตโดยอัตโนมัติ กดปุ่มและตรวจหาเซนเซอร์ อีกครั้ง หรือปรับเปลี่ยนการตั้งค่าโดยตรง (SETUP) KFW 6315 จะดงและใช้การตั้งค่าก่อนหน้านี้ หากไม่มีการเชื่อมต่อเซ็นเซอร์

<u>เริ่มต้นการบันทึก</u> 4.6 ขั้นตอนการบันทึ	ึก		KEW6315
เริ่มต้นการบันทึก			
START			
กดปุ่ม /stop	Guide		
	Start recording		
	Quick st	art guide	
	Star	t now	
	[ESC]:CANCEL	[ENTER]:OK	
เลือก "Quick start guide" หรือ "S รวดเร็ว โดยเลือก "Quick start gu start guide" กดปุ่ม SETUP แล จำเป็นต้องเปลี่ยนแปลงการตั้งค่า ให้ ได้ตรวจสอบความปลอดภัยและการ	tart now" เพื่อเริ่มการบัน ide" เฉพาะการตั้งค่าขอ ะปรับการตั้งค่าขั้นสูงถ้าจ ห้เลือก "Start now" เพื่อเ เตรียมการที่จำเป็นทั้งหม	เท็ก สามารถทำการตั้งค่ากา งการเดินสายไฟและการบัน วำเป็น เมื่อการตั้งค่าที่จำเป็น ริ่มการบันทึก ก่อนเริ่มการวัย ดแล้ว tart now" → ^(INTER) ยืน	ารเริ่มต้นได้อย่างง่ายดายและ ทึกเท่านั้นที่จะรวมอยู่ใน "Quick แสร็จสมบูรณ์แล้ว หรือไม่ ๑ โปรดตรวจสอบให้แน่ใจว่า เยัน ^(ESC) ยกเลิก

สิ้นสุดการบันทึก			
กดปุ่ม (START			
	Guide	REC 14/02/2014 13:47:54	
หมายเลขข้อมูล ——>	Stop recording No.S0014		
ব্ৰ ২ ব	Elapsed time	00064:46:57	
วธการบนทก	REC Start (Manual)	10/02/2014 08:43:1}	
- - - -	Save to:	SD_card	
รายการทจะบนทก	Power Harmonics	Record Record	
	CANCEL	STOP	

ตรวจสอบข้อมูลเกี่ยวกับการบันทึกหรือหยุดการบันทึก

รายการที่แสดงบน LCD				
หมายเลขข้อมูล	หมายเลขข้อมูลของข้อมูลที่บันทึก และยังใช้เป็นชื่อโฟลเดอร์ในการบันทึกข้อมูลด้วย			
Elapsed time	เวลาที่ใช้ไปขณะที่	เวลาที่ใช้ไปขณะที่บันทึก		
	ด้วยตนเอง	แสดง "วันที่และเวลาเริ่มต้นการบันทึก"		
চৰ ৩ ব	การบันทึกคงที่	แสดง "วันที่และเวลาเริ่มต้น/สิ้นสุดการบันทึก"		
.1911.120171011	ช่วงเวลาบันทึก	แสดง "วันที่และเวลาเริ่มต้นของการบันทึก", "ระยะเวลาบันทึก" และ "เวลาในการบันทึก"		
Save to	ตำแหน่งข้อมูลที่จะ	ะบันทึกข้อมูล		
รายการที่บันทึก	รายการที่กำลังบัน	ทึก		

🕡 🗩 ย้ายการเน้นสีฟ้าไปที่ "Cancel" หรือ "Stop" 🔶 💷 ยืนยัน 💷 ยกเลิก

(4)(5) การตรวจสอบสภาพแวดล้อมการทดสอบ

การสลับหน้าจอ

<u>การตรวจสอบสภาพแวดล้อมการทดสอบ</u> เลือก "<mark>Start test</mark> "แล้วกดปุ่ม "ENTER" เพื่อเริ่ม การทดสอบ ผลการทดสอบจะปรากภบนหน้าจอ

การตรวจสอบการเดินสายไฟ

ผลลัพธ์การทดสอบของแต่ละรายการจะแสดงขึ้น

* อาจได้รับผลลัพธ์ NG

แม้ว่าการเดินสายไฟถูกต้องก็ตาม

จะมีการตรวจสอบสภาพการทำงานของระบบ เครื่องมือและแสดงผล

Guide	- -		07/23	
SCheck the test environment	ment.			
Result				
1. RTC	ОК			
2. Flash Memory	ОК			
3. SRAM	ОК			
4. FPGA	ОК		_	
5. Bluetooth				
6. SD Card	ОК			
[ENTER]:CL0	DSE		
0 0 0 0 0 0	0)0	0 0	0	σ
			,	าร

เซ็นเซอร์ที่เชื่อมต่อจะถูกตรวจจับโดยอัตโนมัติ และช่วงสูงสุดจะถูกตั้งค่า

การตัดสิน NG

การตรวจสอบการเดินสายไฟ

ปิดการแสดงผลผลลัพธ์ จากนั้นเวกเตอร์ที่กะพริบและค่าของรายการ NG จะปรากฏขึ้น หากทุกอย่าง OK แผนภาพเวกเตอร์ในอุดมคติจะแสดงที่มุมซ้ายล่าง

เกณฑ์ของการตัดสินและสาเหตุ

ตรวจสอบ	เกณฑ์การตัดสิน	สาเหตุ
ความถี่	ความถี่ V1 อยู่ภายใน 40-70 Hz	- คลิปแรงดันไฟฟ้าเชื่อมต่อกับ DUT อย่างแน่นหนาหรือไม่ - วัดส่วนประกอบฮาร์โมนิคสูงเกินไปหรือไม่
อินพุต แรงดันไฟฟ้า AC	อินพุตแรงดันไฟฟ้า AC คือ 10% หรือมากกว่าของ (แรงดันไฟฟ้าที่ กำหนด x VT)	- คลิปแรงดันไฟฟ้าเชื่อมต่อกับ DUT อย่างแน่นหนาหรือไม่ - สายวัดทดสอบแรงดันไฟฟ้าเชื่อมต่อกับขั้วอินพุตแรงดันไฟฟ้า AC บนเครื่องมืออย่างแน่นหนาหรือไม่
สมดุลแรงดัน ไฟฟ้า	อินพุตแรงดันไฟฟ้า AC อยู่ภายใน ±20% ของแรงดันอ้างอิง (V1) * (ไม่ได้ตรวจสอบการเดินสายไฟ แบบเฟสเดียว)	- การตั้งค่าตรงกับระบบการเดินสายไฟที่ทดสอบหรือไม่ - คลิปแรงดันไฟฟ้าเชื่อมต่อกับ DUT อย่างแน่นหนาหรือไม่ - สายวัดทดสอบแรงดันไฟฟ้าเชื่อมต่อกับขั้วอินพุตแรงดันไฟฟ้า AC บนเครื่องมืออย่างแน่นหนาหรือไม่
เฟส แรงดันไฟฟ้า	เฟสของอินพุตแรงดันไฟฟ้า AC อยู่ภายใน ±10° ของค่าอ้างอิง (เวกเตอร์ถูกต้อง)	- เชื่อมต่อสายทดสอบแรงดันไฟฟ้าอย่างถูกต้องหรือไม่ (เชื่อมต่อกับช่องที่ถูกต้องหรือไม่)
อินพุต กระแสไฟฟ้า	อินพุตกระแสไฟฟ้าคือ 5% ขึ้นไป และ 110% หรือน้อยกว่าของ (ช่วงกระแสไฟฟ้า x CT)	 - เซ็นเซอร์แคลมป์เชื่อมต่ออย่างแน่นหนากับขั้วอินพุตกำลังไฟ บนเครื่องมือหรือไม่ การตั้งค่าสำหรับช่วงกระแสไฟฟ้าเหมาะสมสำหรับระดับการ ป้อนค่าหรือไม่
เฟส กระแสไฟฟ้า	- พาวเวอร์แฟกเตอร์ (PF, ค่า สัมบูรณ์) ที่แต่ละ CH คือ 0.5 หรือมากกว่า - กำลังไฟฟ้าที่ใช้จริง (P) ที่ CH แต่ละ CH เป็นค่าบวก	- เครื่องหมายลูกศรบนเซ็นเซอร์แคลมป์และทิศทางของ กระแสไฟมีทิศทางตรงกันหรือไม่ (แหล่งจ่ายไฟไปยังโหลด) - เซ็นเซอร์แคลมป์เชื่อมต่ออย่างถูกต้องหรือไม่

การวินิจฉัยด้วยตนเอง

ถ้ามีการตัดสินด้วย "NG" บ่อยครั้ง อาจมีสิ่งผิดปกติเกิดขึ้นกับเครื่องมือ หยุดการใช้เครื่องมือและอ้างอิงถึง "**บทที่ 11** การแก้ไขปัญหา" (หน้า 157)

Guide 🗖 -	2013/07/23 19:43:08
SCheck the test environment.	
Result	
1. RTC OK	
2. Flash Memory OK	
3. SRAM OK	
5. Bluetooth NG	
[ENTER]:CL	OSE
0 0 0 0 0 0 0	0/0/0

การตรวจจับเซ็นเซอร์

หากผลการตรวจจับเป็น NG เซ็นเซอร์แต่ละประเภทจะแสดงเป็นสีแดง

Guide	I	2013/07/23 20:28:57	Guide	□ - = 2013// 20:2	07/23 8:57
⑤Check	the test environ	ment.	⑤Check	the test environment.	
	Result			Result	_
1ch	8125:MAX 500A,	Φ40mm	1ch	????NG	
2ch	8128:MAX 50A,	Φ24mm	2ch	8125:MAX 500A, Φ40mm	
3ch	8125:MAX 500A,	Φ40mm	3ch	8125:MAX 500A, Φ40mm	
	ſenter	1:CLOSE		[ENTER]:CLOSE	
1)0/	3/4/5/6/0	0/0/0/0	1)27	3 4 5 6 7 8 9	0

เกณฑ์ของการตัดสินและสาเหตุ

ตรวจสอบ	สาเหตุ
ประเภทของ เซนเซอร์กระแสไฟฟ้า	- ประเภทของเซ็นเซอร์กระแสไฟฟ้าที่เชื่อมต่ออยู่มีความสอดคล้องกันหรือไม่ ประเภทของ เซ็นเซอร์กระแสไฟฟ้าที่ใช้สำหรับการวัดควรจะเหมือนกัน
??? (ไม่ทราบสาเหตุ)	 - เซ็นเซอร์กระแสไฟฟ้าเชื่อมต่อกับเครื่องมืออย่างแน่นหนาหรือไม่ - หากมีข้อสงสัยเกี่ยวกับความล้มเหลว: แลกเปลี่ยนการเชื่อมต่อของเซ็นเซอร์และทดสอบอีกครั้ง เชื่อมต่อเซ็นเซอร์ปัจจุบันที่ได้รับผล "NG" เข้ากับ CH ที่เซ็นเซอร์อื่นตรวจพบอย่างถูกต้อง หากให้ผลลัพธ์ "NG" สำหรับ CH เดียวกัน แสดงว่าเครื่องมือมีข้อบกพร่อง สงสัยว่ามี ข้อบกพร่องของเซ็นเซอร์หากระบุ "NG" สำหรับเซ็นเซอร์ตัวเดียวกันที่เชื่อมต่อกับ CH อื่น หยุดใช้เครื่องมือและเซ็นเซอร์ หากมีข้อสงสัยเกี่ยวกับข้อบกพร่องใดๆ และดูที่ "บทที่ 11 การแก้ไขปัญหา" (หน้า 157) ในคู่มือเล่มนี้

(8)(9) การตั้งค่าสำหรับวิธีการบันทึก ข้อมูลต่อไปนี้จะอธิบายวิธีการตั้งค่าวันที่และเวลาเริ่มต้นการบันทึก

(<mark>8)</mark> ระบุวันที่และเวลาเริ่มต้นการบันทึก				
Guide	□ • 2013/07/04 20:02:37			
Set a record	ling time.			
REC Start REC End	2013/08/02 08:00 2013/08/07 18:00			
	Next			
(ESC]:BACK	5 6 0 8 9 00 [ENTER]:0K			

ในระหว่างช่วงเวลาที่เลือก KEW 6315 จะบันทึกข้อมูลตามช่วงเวลาที่ตั้งค่าไว้ ตัวอย่าง: เมื่อระบุวันที่และเวลาตามข้างต้น ระยะเวลาการบันทึกจะเป็นดังนี้

ตั้งแต่เวลา 8:00 น. ของวันที่ 2 สิงหาคม 2013 ถึงเวลา 18:00 น. ของวันที่ 7 สิงหาคม 2013

(9) ระบุช่วงเวล	าการบันทึก
Guide	□ - € 2013/08/01 20:24:11
	ding period.
REC Time	08:00 ~ 18:00
REC Period	2013/08/01~2013/08/08
	Next
0/0/0/0/0	
LESCIBACK	I ENTER I 'OK

[LENIEK]: BACK [ENIEK]: UK] KEW 6315 จะบนทักข้อมูลในช่วงเวลาที่เลือกในช่วงเวลาที่กำหนดไว้ล่วงหน้า และทำซ้ำขั้นตอนการบันทึกในช่วงเวลา ที่กำหนดไว้ล่วงหน้า

ตัวอย่าง: เมื่อกำหนดระยะเวลาตามข้างต้น ระยะเวลาบันทึกจะเป็นดังนี้

- (i) 8:00 ถึง 18:00 ในวันที่ 1 สิงหาคม 2013
- (ii) 8:00 ถึง 18:00 ในวันที่ 2 สิงหาคม 2013
- (iii) 8:00 ถึง 18:00 ในวันที่ 3 สิงหาคม 2013
- (iv) 8:00 ถึง 18:00 ในวันที่ 4 สิงหาคม 2013
- (v) 8:00 ถึง 18:00 ในวันที่ 5 สิงหาคม 2013
- (vi) 8:00 ถึง 18:00 ในวันที่ 6 สิงหาคม 2013
- (vii) 8:00 ถึง 18:00 ในวันที่ 7 สิงหาคม 2013 และ
- (viii) 8:00 ถึง 18:00 ในวันที่ 8 สิงหาคม 2013

การสลับพารามิเตอร์ที่แสดง

โดยพื้นฐานแล้ว ปุ่ม <mark>เคอร์เซอร์</mark> ใช้สำหรับ ^(H) เลือกรายการ ส่วนปุ่ม <mark>ENTER</mark> ใช้สำหรับ (IIII) ยืนยัน การเลือกปุ่ม ESC ใช้สำหรับ (IIII) การยกเลิกการสลับ ทำตามขั้นตอนใน "Quick Start Guide" เป็นตัวอย่าง การใช้งานปุ่มสามารถ อธิบายได้ดังนี้

Guide Cuick start guide Cuick start now	กดปุ่ม <mark>เคอร์เซอร์</mark> เพื่อย้าย <mark>ไฮไลต์สีน้ำเงิน</mark> แสดงรายการกำลังถูกเลือกอยู่ เหนือรายการที่เป็นตัวอักษรสีน้ำเงิน ในหน้าจอด้านซ้ายคือหน้าจอเริ่มต้น การบันทึกทึก กดปุ่ม <mark>เคอร์เซอร์</mark> และย้ายไต้องการ แล้วกดปุ่ม <mark>ENTER</mark> เพื่อ ยืนยันการเลือก หากต้องการออกจาก Start Guide ให้กดปุ่ม <mark>ESC</mark>
Guide Image: Constraint of the system of	หากการแสดงรายการที่เลือกได้คล้ายกับรายการที่แสดงทางด้านซ้าย ก็สามารถใช้ปุ่ม <mark>เคอร์เซอร์</mark> ขึ้น ลง ขวาและซ้ายได้ ใช้ปุ่ม <mark>เคอร์เซอร์</mark> เพื่อเลือกระบบการเดินสายไฟที่เหมาะสม และกดปุ่ม <mark>ENTER</mark> เพื่อยืนยันการเลือก หากต้องการกลับไปยังหน้าจอก่อนหน้าและยกเลิกการ เปลี่ยนแปลง ให้กดปุ่ม <mark>ESC</mark>
Image: Constraint of the state of the s	หากต้องการเปลี่ยนตัวเลข เช่น วันที่/ เวลา ให้เลื่อนไฮไลต์สีน้ำเงินไปเหนือ ตัวเลขด้วยปุ่ม <mark>เคอร์เซอร์</mark> ขวาและซ้าย และเปลี่ยนตัวเลขด้วยปุ่ม <mark>เคอร์เซอร์</mark> ขึ้นและลง ในหน้าจอทางด้านซ้าย กำลังเลือกอันดับที่สิบของวัน สามารถเพิ่มหรือลดจำนวนได้ 1 ด้วยปุ่ม <mark>เคอร์เซอร์</mark> ขึ้น/ลง กด <mark>ENTER</mark> ปุ่มเพื่อยืนยันการเลือกหรือกด <mark>ESC</mark> คีย์สำหรับกลับไปยังหน้าจอ ก่อนหน้าและยกเลิกการเปลี่ยนแปลง

ข้อควรระวัง:

หากตั้งค่า "AUTO" เป็น "A Range" จะสามารถเลือก "Power + Harmonics" หรือ "Power only" ได้ในขั้นตอนที่ (1): *เลือกรายการบันทึกที่ต้องการ* หากต้องการบันทึกรายการที่เกี่ยวข้องกับคุณภาพกำลังไฟ ให้ตั้งค่าเป็นช่วงกระแสไฟ ที่เหมาะสมอื่นๆ นอกเหนือจาก "AUTO" เฉพาะการตั้งค่าของการเดินสายไฟและการบันทึกเท่านั้นที่จะรวมอยู่ใน "Quick start guide"

ควรเลือกและป้อนข้อมูลต่อไปนี้ก่อนที่จะเริ่มบันทึก กดปุ่มเ SETUP พื่อแสดงหน้าจอการตั้งค่า

* แรงดันไฟฟ้า/ความถี่ที่กำหนด, THD สำหรับเหตุการณ์คุณภาพกำลังไฟ และค่าสัมประสิทธิ์การกรอง (การเพิ่ม) สำหรับ การวัด Flicker

เมื่อการตั้งค่าของ "A Range" ถูกตั้งค่าเป็นอย่างอื่นที่ไม่ใช่ "AUTO" การตั้งค่าของ "+ Clamp" จะถูกเปลี่ยนเป็น "OFF" โดยอัตโนมัติ

<u>การตั้งค่าระบบการเดินสายไฟ</u> การตั้งค่าระบบสายไฟ

SET UP		🗖 🗓	• 06/01/2014 15:23:22
Racic	Moas	Rec Sau	Athers
Wiring			
Ŵi	ring	3P4	4W
+(lamp	+1	A J
Voltage			
V	Range	600V	
VT Ratio		1.00	
Nominal V		100V	
Current		1,2,3ch	4ch
Clamp		8125	8125
		F00 0 A	E00 0 4
Diagram	Detect		
F1	J		

"Basic wiring"

เลือกหนึ่งรายการตามระบบการเดินสายไฟที่จะวัด

การเชื่อมต่อสายไฟ

\rm ย่านข้อควรระวังต่อไปนี้ก่อนที่จะเชื่อมต่อสายไฟ

∆อันตราย

- โดยคำนึงถึงหมวดหมู่การวัดซึ่งวัตถุที่อยู่ระหว่างการทดสอบนั้นอยู่ อย่าทำการวัดในวงจรที่มีค่าศักย์ไฟฟ้าเกินค่า ดังต่อไปนี้
 - * 300 V AC สำหรับ CAT IV, 600 V AC สำหรับ CAT III, 1000 V AC สำหรับ CAT II
- ใช้สายวัดทดสอบแรงดันไฟฟ้าและเซ็นเซอร์แคลมป์สำหรับเครื่องมือนี้โดยเฉพาะ
- เชื่อมต่อเซ็นเซอร์แคลมป์ สายวัดทดสอบแรงดันไฟฟ้า และสายไฟเข้ากับเครื่องมือก่อน จากนั้นจึงเชื่อมต่อกับวัตถุ ที่วัดหรือแหล่งจ่ายไฟ
- เมื่อรวมเครื่องมือและสายทดสอบและใช้ร่วมกัน ไม่ว่าจะอยู่ในหมวดหมู่ที่ต่ำกว่าหมวดหมู่ใดก็ตาม ให้ยืนยันว่า จะต้องไม่เกินอัตราแรงดันไฟฟ้าที่วัดได้ของสายทดสอบ
- อย่าเชื่อมต่อสายวัดทดสอบแรงดันไฟฟ้าหรือเซ็นเซอร์แคลมป์ เว้นแต่จำเป็นสำหรับการวัดพารามิเตอร์ที่ต้องการ
- ควรเชื่อมต่อเซ็นเซอร์แคลมป์บนด้านปลายทางของอุปกรณ์ตัดวงจรเสมอ ซึ่งจะปลอดภัยกว่าด้านต้นทาง
- อย่าเปิดวงจรด้านรองของ CT เสริมในขณะที่มีพลังงานอยู่เนื่องจากแรงดันไฟฟ้าสูงที่เกิดขึ้นที่ขั้วต่อด้านรอง
- ระวังอย่าให้สายไฟลัดวงจรกับส่วนที่ไม่มีฉนวนของหัววัดทดสอบแรงดันไฟฟ้าระหว่างการตั้งค่าเครื่องมือ อย่า สัมผัสชิ้นส่วนโลหะของปลาย
- ก้ามปูหม้อแปลงได้รับการออกแบบเพื่อหลีกเลี่ยงไฟฟ้าลัดวงจร ถ้าวงจรภายใต้การทดสอบได้เปิดส่วนที่นำไฟฟ้า จะต้องระวังเป็นพิเศษเพื่อลดความเป็นไปได้ในการลัดวงจร
- เก็บนิ้วของคุณไว้ข้างหลัง อุปกรณ์ป้องกันนิ้วมือ และตัวกั้นเสมอในระหว่างการวัด อุปกรณ์ป้องกันนิ้วมือและตัวกั้น เป็นชิ้นส่วนที่ให้การป้องกันไฟฟ้าช็อต และช่วยรับประกันระยะที่สั้นที่สุดที่ต้องการ และ ระยะห่างตามผิวฉนวน
- ห้ามพยายามถอดสายทดสอบแรงดันไฟฟ้าออกจากตัวเชื่อมต่อของอุปกรณ์ในระหว่างการวัด ในขณะที่อุปกรณ์มี กระแสไฟฟ้า
- อย่าแตะสองสายภายใต้การทดสอบด้วยปลายโลหะของสายทดสอบ

∆ีคำเตือน

- เพื่อหลีกเลี่ยงไฟซีอตและไฟฟ้าลัดวงจรที่อาจเกิดขึ้น ให้ปิดการจ่ายไฟสายวัดภายใต้การทดสอบที่การเชื่อมต่อ การเดินสายไฟเสมอ
- อย่าสัมผัสกับปลายที่ไม่มีฉนวนของสายทดสอบแรงดันไฟฟ้า
- หยุดใช้สายทดสอบ ถ้าแจ็คเก็ตด้านนอกเสียหาย และมองเห็นโลหะภายในหรือแจ็คเก็ตสี

VT/CT*

* การตั้งค่านี้เป็นของการตั้งค่าการวัดกระแสไฟฟ้า

\land อันตราย

- โดยคำนึงถึงหมวดหมู่การวัดซึ่งวัตถุที่อยู่ระหว่างการทดสอบนั้นอยู่ อย่าทำการวัดในวงจรที่มีค่าศักย์ไฟฟ้าเกินค่า ดังต่อไปนี้
 - * 300 V AC สำหรับ CAT IV, 600 V AC สำหรับ CAT III, 1000 V AC สำหรับ CAT II
- เชื่อมต่อสายไฟเข้ากับช่องเสียบ ห้ามเชื่อมต่อเข้ากับช่องเสียบของ 240 V AC หรือมากกว่า
- อุปกรณ์นี้ต้องใช้กับด้านรองของ VT (หม้อแปลงไฟฟ้า) และ CT (หม้อแปลงกระแสไฟฟ้า)
- อย่าเปิดวงจรด้านรองของ CT เสริม ในขณะที่มีพลังงานอยู่เนื่องจากแรงดันไฟฟ้าสูงที่เกิดขึ้นที่ขั้วต่อด้านรอง

่ ____ุ่ข้อควรระวัง

 เมื่อใช้ VT หรือ CT จะไม่สามารถรับประกันความแม่นยำในการวัดได้เนื่องจากปัจจัยหลายประการ เช่น คุณลักษณะ ของเฟสและความแม่นยำของ VT/CT

อาจจำเป็นต้องใช้ VT/CT เสริม หากค่าแรงดัน/กระแสไฟฟ้าของวงจรภายใต้การทดสอบอยู่นอกช่วงการวัดของ เครื่องมือ ในกรณีนี้ สามารถรับค่าที่ด้านหลัของวงจรได้โดยตรงโดยการวัดด้านรองด้วยการติดตั้ง VT หรือ CT ที่เหมาะสมในสายภายใต้การทดสอบตังนี้

< ตัวอย่างของเฟสเดียว 2 สาย (1 ระบบ) "1P2W x 1" >

เมื่อพิกัดด้านรองของ CT คือ 5A แนะนำให้ใช้แคลมป์เซนเซอร์ 8128/8135 (ประเภท 50A) และทดสอบที่ช่วง 5A

ในกรณีนี้ ให้ตั้งค่าอัตราส่วนจริงของ VT และ CT ที่จะใช้

<u>การตั้งค่าของการวัดกระแสไฟฟ้า</u>

KEW6315

การตั้งค่าของการวัดกระแสไฟฟ้า

SET UP		🗖 🖗	- 06/01/2014 15:23:53	
Basic	Meas.	Rec. Sav	ve Others	
Nominal V		100V		
Current		1,2,3ch	4ch	
C1	.amp	8125	8125	
A	Range	500.0 A	500.0 A	
U	Katio	00.1	00.1	
DC DC Range		1000mV		
Frequency N_minal f		50Hz		
	Setect			
l	(F2)	J		

"Clamp" : เซ็นเซอร์แคลมป์สำหรับการวัดกระแสไฟฟ้า

เลือกชื่อรุ่นของเซ็นเซอร์ที่เชื่อมต่อ ประเภทของเซ็นเซอร์กระแสไฟฟ้าที่ใช้สำหรับการวัดควรจะเหมือนกัน หากมีการใช้ เซ็นเซอร์เสริมและตั้งค่าสำหรับ "**+Clamp**" เซ็นเซอร์พิเศษสามารถตั้งได้ 4ch ขนาดกระแสไฟฟ้าที่จัดอันดับไว้และ ขนาดตัวนำไฟฟ้าสูงสุดจะแสดงในป็อปอัพขณะเปิดรายการรุ่นของเซ็นเซอร์

5.3 การตั้งค่าการวัด	KEW6315
5.3 การตั้งค่าการวัด	
กดปุ่ม SET UP 🛶 🔍 🕪 เปลี่ยนแท็บเป็น "Measurement"	
SET U Basi Measurement Rec. Save Others	
Demana Managuranta 20min	
Medsurement <u>Somin</u>	
Target 100 Alw	
la maget 100.0kw	
Harmonics	
THD calc. THD-F	
MAX hold ON	
Edit allowable range.	
Power quality	

การตั้งค่าการวัดความต้องการ

SET UP		□ 🗓 🗲 06/01/201 15:24:35
Racic	Maasuramant	Roc Save Others
Demand		
	Measuremen	t 30min.
	Inspection	10min.
	Target	100.0kW
Harmon	ics	
	THD calc.	THD-F
	MAX hold	ON
	Edit a	llowable range.
Power	quality	
	Unstands	۲۵.
1		

"รอบ Measurement"

ปิดใช้งานการวัดความต้องการหรือตั้งค่ารอบการวัดความต้องการในช่วงการบันทึกที่ตั้งไว้ล่วงหน้า เมื่อการวัดความต้องการเริ่มต้นขึ้น ค่าความต้องการที่วัดได้จะถูกบันทึกในรอบการวัดที่เลือก ควรเลือกรอบเวลาจาก รายการต่อไปนี้

> การเลือก Not be used./ 10 min/ 15 min/ 30 min

* การตั้งค่าเริ่มต้นจะถูกไฮไลต์เป็น สีเทา

รอบการวัดความต้องการที่เลือกมีผลต่อการเลือกช่วงการวัด

เนื่องจากช่วงการวัดไม่สามารถตั้งค่าให้นานกว่าช่วงความต้องการได้ ช่วงการวัดที่ตั้งไว้ล่วงหน้าอาจเปลี่ยนแปลงได้โดย อัตโนมัติตามรอบการวัดความต้องการที่เลือก

ช่วงการวัดที่เลือกได้: 1sec/ 2sec/ 5sec/ 10sec/ 15sec/ 20sec/ 30sec/ 1 min/ 2 min/ 5 min/ 10 min/ 15 min/ 30 min

<u>การตั้งค่าการวัดความต้องการ</u>

"รอบ Inspection"

เสียงออดจะดังขึ้นเมื่อค่าที่คาดการณ์ไว้เกินค่าเป้าหมายภายในรอบการตรวจสอบที่เลือก

รอบการตรวจสอบควรสั้นกว่าวงจรการประเมินความต้องการ ความสัมพันธ์ระหว่างรอบการวัดและรอบการตรวจสอบ มีดังนี้

	รอบการวัด	รอบ Inspection
	10 min/ 15 min	1 min/ 2 min/ 5 min
	30 min	1 min/ 2 min/ 5 min/ 10 min/ 15 min
		* ค่าเริ่มต้นจะถูกไฮไลต์เป็นสีเทา
้ย้ายไฮไลเ	ต์สีน้ำเงินไปที่ "Inspection"	ENTER แสดงหน้าต่างรายการค่า* →
	_	* ป็อปอัปจะปรากฏขึ้นและแสดงช่วงที่มีผลบังค้
🗑 เลือกเวล	เาที่ต้องการ → 🕅 ยืน:	ยัน 📧 ยกเลิก

เค้าโครงของแนวคิดการวัดความต้องการ

ในสัญญาดังกล่าว อัตราค่าไฟฟ้า (เช่น หน่วย kWhr) จะขึ้นอยู่กับความต้องการไฟฟ้าสูงสุดของผู้บริโภค ความต้องการ สูงสุดคือกำลังไฟสูงสุดโดยเฉลี่ยที่บันทึกไว้ในช่วงเวลา 30 นาที

้สมม[ู]้เติว่าความต้อง[ู]้การเป้าหมายสูงสุดคือ 500kW พลังงานเฉลี่ยในระหว่างรอบการวัดที่ 1 ถือว่าใช้ได้ แต่ปริมาณการใช้ พลังงานสำหรับ 15 นาทีแรกของรอบการวัด 2 คือ 600 kW ในกรณีดังกล่าว สามารถรักษากำลังเฉลี่ยระหว่างรอบการ วัดไว้ที่ 500 kW (เหมือนกับรอบการวัด 1) โดยการลดกำลังในช่วง 15 นาทีสุดท้ายลงเหลือ 400 kW หากการใช้กำลังไฟ ในช่วงครึ่งแรกของรอบที่ 2 คือ 1000 kW และ 15 นาทีสุดท้ายคือ 0 kW กำลังไฟเฉลี่ยจะเท่ากัน: 500 kW. ในขณะที่ "รอบการตรวจสอบ" ถูกตั้งค่าเป็น "15 นาที" เสียงกริ่งจะดังขึ้นหลังจากผ่านไป 15 นาที เมื่อเริ่มรอบการวัดที่ 2

"Edit allowable range"

ตั้งค่าช่วงที่อนุญาตของ EMC (อัตราของเนื้อหา) สำหรับฮาร์โมนิกต่อลำดับ ช่วงที่แก้ไขจะแสดงเป็นกราฟแท่งบนกราฟ ของฮาร์โมนิก

การตั้งค่าของค่าเกณฑ์สำหรับคุณภาพกำลังไฟ (เหตุการณ์)

การตั้งค่าขีดจำกัดสำหรับ Power quality (เหตุการณ์)

SET UP			
Basic	Measurement	Rec. Save Others	
	MAX hold	ON	
	E 414 - 11	awahla yanga	
Power	quality		
	Hysteresis	5%	
	Transient	300 Vpeak	
	SWELL	110%(110.0 V)	
	DIP	90%(90.0 V)	
INT		OFF	
	InrushCurrent	I OFF	
0FF			
F1			

กดปุ่ม F1 (OFF/ ON) เพื่อปิดใช้งานหรือเปิดใช้งานรายการ "threshold value" ถ้าเลือก "OFF" ไว้ รายการจะ

ไม่ถูกบันทึกแม้ว่าจะตั้งค่าของค่าเกณฑ์ไว้ก็ตาม ค่าเกณฑ์ที่ใช้ระหว่างการวัดก่อนหน้านี้จะแสดงขึ้นโดยการกดปุ่ม

F1 (ON)

ข้อควรระวัง:

ค่าเกณฑ์สำหรับ "Swell", "Dip" และ "INT" คือเปอร์เซ็นต์ของแรงดันไฟฟ้าที่กำหนด ดังนั้นเมื่อแรงดันไฟฟ้าที่กำหนดมีการ เปลี่ยนแปลง แรงดันไฟฟ้าค่าเกณฑ์ก็จะเปลี่ยนแปลงตามไปด้วย สำหรับ "Transient" หากแรงดันไฟฟ้าที่กำหนดมีการ เปลี่ยนแปลง ค่าเริ่มต้นจะถูกตั้งค่าเป็น "300%" โดยอัตโนมัติ ซึ่งเป็นสามเท่าของแรงดันไฟฟ้าที่กำหนดใหม่ (แรงดันไฟฟ้า สูงสุด) ค่าเกณฑ์สำหรับr "Inrush current" คือเปอร์เซ็นต์ของช่วงกระแสไฟฟ้า ดังนั้นค่าจะถูกเปลี่ยนแปลงถ้าการตั้งค่าของ ช่วงกระแสไฟฟ้ามีการเปลี่ยนแปลง

"Hysteresis"

ตั้งค่าฮีสเทอเรซิสที่ต้องการเป็นเปอร์เซ็นต์เพื่อปิดใช้งานการตรวจจับเหตุการณ์สำหรับพื้นที่เฉพาะ การตั้งค่า ฮีสเทอเรซิสที่เหมาะสมจะเป็นประโยชน์ในการป้องกันการตรวจจับเหตุการณ์ที่ไม่จำเป็นซึ่งมีสาเหตุจากความผันผวนของ แรงดันไฟฟ้าหรือกระแสไฟฟ้ารอบค่าเกณฑ์

KEW6315

<u>การตั้งค่าตัวกรองสำหรับการวัด Flicker</u>

KEW6315

การตั้งค่าตัวกรองสำหรับการวัด Flicker

SET UP		2014/02/2 10:49:36
Basic	Measurement	Rec. Save Others
	11930010313	J'0
	Transient	600 Vpeak
	SWELL	110%(220.0 V)
	DIP	90%(180.0 V)
	INT	OFF
	Townshiftoward	
Flicke	er	
Filter 230V		230V
Capacitance calculation		
	Target PF	1.000

"Filter coefficient"

ตั้งค่าสัมประสิทธิ์การกรองที่เหมาะสมตามแรงดันไฟฟ้าที่กำหนดเพื่อการวัดการกะพริบที่แม่นยำ เลือกค่าแรงดันไฟฟ้าที่กำหนด ความถี่ที่กำหนด และค่าสัมประสิทธิ์ตัวกรองที่เหมาะสมกับวัตถุที่วัดจริง หากเป็นไปได้ ให้ปรับค่าสัมประสิทธิ์การกรองและแรงดันไฟฟ้าที่กำหนดให้สอดคล้องกัน

พาวเวอร์แฟกเตอร์เป้าหมายสำหรับ Capacitance calculation

KEW6315

พาวเวอร์แฟกเตอร์เป้าหมายสำหรับ Capacitance calculation

SET UP		Ĺ] 🔳	2014/02/ 10:50:0	24 16
Basic	Measurement	Rec.	Save	Others	
	Transient	6	00 Vp	eak	
	SWELL	110%	(220.	0 V)	
	DIP	90%	(180.	0 V)	
	INT		OFF		
	InrushCurrent OFF				
Flicke	er				
Filter			220V		
Capacitance calculation					
	Target PF		1.000		

"Target power factor"

้ตั้งค่าพาวเวอร์แฟกเตอร์เป้าหมายสำหรับการคำนวณความจุไฟฟ้า พาวเวอร์แฟกเตอร์ได้รับอิทธิพลไม่ดีหากโหลดเหนี่ยวนำ เช่น มอเตอร์ เชื่อมต่อกับแหล่งจ่ายไฟ เนื่องจากเฟสกระแสไฟฟ้าจะล้าหลังเฟสแรงดันไฟฟ้าในกรณีนี้ โดยปกติแล้ว ตัวเก็บ ้ประจุขั้นสูงแบบเฟสจะถูกติดตั้งในการติดตั้งที่รับไฟฟ้าแรงสูง เพื่อลดอิทธิพลดังกล่าว การปรับปรุงพาวเวอร์แฟกเตอร์อาจ ลดอัตราค่าไฟฟ้าหากลูกค้าอยู่ในโครงการก่อสร้างกำลังไฟฟ้าต่ำ สูง หรือทางอุตสาหกรรม

<u>5.4 การตั้งค่าการบันทึก</u>			KEW6315
5.4 การตั้งค่าการเ	บันทึก		
กดปุ่ม SET UP 🛶 🔍) เปลี่ยนแท็บเป็น " Reco	ording"	
	SET UP Basic Meas Recor	06/01/2014 15:26:21 Save Others	
	Power	Record	
	Harmonics	Record	
	Event	Record	
	REC method		
	Interval	30min.	
	Start	Manual	

<u>การตั้งค่าสำหรับการบันทึกรายการ</u>

KEW6315

การตั้งค่าสำหรับการบันทึกรายการ

SET UP		□ 🗓 🕊 06/01/2014 15:26:21
Basic	Meas- Recor	ding Save Others
REC It	ems	
	Power	Record
	Harmonics	Record
l	Event	Record
KEC me	thod	
	Interval	30min.
	Start	Manual

เวลาในการบันทึกที่เป็นไปได้บน SD การ์ดหรือหน่วยความจำภายในจะแตกต่างกันไปขึ้นอยู่กับจำนวนรายการที่บันทึก และช่วงเวลาที่ตั้งไว้ล่วงหน้า เลือก "Do not record" สำหรับรายการที่ไม่จำเป็นต้องบันทึกเพื่อให้บันทึกได้นานขึ้น รายละเอียดจะได้รับการอธิบายใน "*เวลาบันทึกที่เป็นไปได้*"(หน้า **76**)

"Power"

้ไฮไลต์สีน้ำเงินไม่สามารถระบุตำแหน่งได้ในบริเวณนี้ ซึ่งเพื่อให้แน่ใจว่ารายการทั้งหมดที่เกี่ยวข้องกับพลังงานไฟฟ้า ได้รับการบันทึกไว้เสมอ

"Harmonics"

เลือก "Record" หรือ "Do not record" สำหรับฮาร์โมนิกของแรงดันไฟฟ้า กระแสไฟฟ้า และกำลังไฟฟ้า

การเลือก Record / Do not record

* การตั้งค่าเริ่มต้นจะถูกไฮไลต์เป็น สีเทา

"Event"

เลือก "Record" หรือ "Do not record" ข้อมูลโดยละเอียดเมื่อเกิดเหตุการณ์คุณภาพกำลังไฟ ไม่สามารถเลือก "Do not record" ได้เมื่อตั้งค่า "AUTO"* ไว้ที่ "A Range" หากต้องการเลือก "Record" ให้ตั้งค่าเป็นช่วงกระแสไฟที่เหมาะสมอื่นๆ นอกเหนือจาก "AUTO"

* การวัดที่เป็นไปตาม IEC61000-4-30 Class S ไม่สามารถทำได้ด้วยการตั้งค่า "AUTO"

<u>รายการที่บันทึก</u>

KEW6315

รายการที่บันทึก

ข้อมูลต่อไปนี้ที่วัดในแต่ละ CH จะถูกบันทึกตามวิธีการบันทึกที่เลือก รายการที่บันทึกไว้จะขึ้นอยู่กับวิธีการบันทึกและระบบการเดินสายไฟที่เลือก

		การตั้งค่า Meas/ Rec			
เพล REC	รายการ REC	แหล่งจ่ายไฟ	+ฮาร์โมนิก	+เหตุการณ์	
	แรงดันไฟฟ้า RMS (สาย∕ เฟส)				
	กระแสไฟฟ้า RMS				
	กำลังไฟฟ้าที่ใช้จริง				
	กำลังไฟฟ้าที่สูญเสีย				
	กำลังไฟฟ้าปรากฏ				
	พาวเวอร์แฟกเตอร์				
	ความถื่				
	กระแสไฟฟ้าเป็นกลาง (3P4W)				
	มุมเฟส V/ A (ลำดับที่ 1)				
	แรงดันไฟฟ้าอินพุตแบบแอนะล็อก, 1CH, 2CH				
	อัตราส่วนของ V/A ที่ไม่สมดุล	1.52.75	100.75	1010	
การวด	แรงดันไฟกะพริบ 1-min	•	•	•	
กาลงเพ	การกะพริบ (Pst) V ระยะสั้น				
	การกะพริบ (Plt) V ระยะยาว				
	การคำนวณความจุไฟฟ้า				
	พลังงานของกำลังไฟที่ใช้งานอยู่ (การใช้) (การน้ำมาใช้ใหม่)				
	กำลังไฟฟ้าที่สูญเสีย(การใช้) ล้าหลัง/ นำหน้า				
	พลังงานของกำลังไฟปรากฏ (การใช้/ การนำมาใช้ใหม่)				
	กำลังไฟฟ้าที่สูญเสีย(การนำมาใช้ใหม่) ล้าหลัง/ นำหน้า				
	ความต้องการ (W/VA)				
	ความต้องการเป้าหมาย (W/VA)				
	ความเพี้ยนฮาร์โมนิกรวมของ V(F/R)				
	ความเพี้ยนฮาร์โมนิกรวมของ A(F/R)				
	ฮาร์โมนิก V/ A(ลำดับที่ 1-50)				
a,	มุมเฟส V/ A (ลำดับที่ 1-50)				
การวัดฮาร์ไมนีก	ความแตกต่างของเฟส V/ A (ลำดับที่ 1-50)				
	กำลังฮาร์โมนิก (ลำดับที่ 1-50)				
การเปลี่ยนแปลง	แรงดันไฟฟ้า RMS ต่อครึ่งรอบ				
V/ A	V/ A กระแสไฟฟ้า RMS ต่อครึ่งรอบ			•	
	วันที่และเวลาที่ตรวจพบเหตุการณ์				
ประเภทเหตุการ	ประเภทเหตุการณ์			•	
ណ័	ค่าที่วัดได้เมื่อตรวจพบเหตุการณ์				
รูปคลื่น	รูปคลื่น V/A			٠	

<u>KEW6315 วิธีการบั</u>	<u>นทึก</u>
วิธีการบันทึก	
SET UP Control of the state of the s	
การเลือก 1 sec/ 2 sec/ 5 sec/ 10 sec/ 15 sec/ 20 sec/ 30 sec/ 1 min/ 2 min/ 5 min/ 10 min/ 15 min/ 20 min/ 30 min/ 1 hour/ 2 hours/ 150,180 cycles (ประมาณ 3 วินาที)	
* การตั้งค่าเริ่มต้นจะถูกไฮไลต์เป็น สีเทา * ช่วง: 150, 180 cycles (ประมาณ 3 วินาที) เป็นสิ่งที่กำหนดไว้ใน IEC61000-4-30 ขัข้อมูลจะถูกรวบรวมใน 150 cy ที่ 50 Hz (ความถี่ที่กำหนด) และใน 180 cycles ที่ 60 Hz (ความถี่ที่กำหนด)	cles

โปรดดู "**(8)/ (9) การตั้งค่าวิธีการบันทึก**" (หน้า 45)

	การเลือก				
เวลาและวันที่เริ่มต้น	วัน/ เดือน/ ปี	ชั่วโมง:นาที (00/00/0000	00:00)		
เวลาและวันที่หยุด	วัน/ เดือน/ ปี	ชั่วโมง:นาที (00/00/0000	00:00)		

KEW6315

"Time period recording"

ข้อมูลที่วัดจะถูกบันทึกที่ช่วงที่กำหนดไว้ล่วงหน้าสำหรับรอบระยะเวลาที่ระบุของรอบระยะเวลาที่เลือก เมื่อถึงเวลาที่ระบุ การ[์]บันทึกจะเริ่มต้นและหยุดโดยอัตโนมัติ โดยรอบการบันทึกดังกล่าวจะเกิด[์]ขึ้นซ้ำทุกวันในระหว่างรอบระยะเวลาที่ระบุ โปรดดู "**(8)/ (9) การตั้งค่าวิธีการบันทึก**" (**หน้า 45**)

		การเลือก
REC Period	เริ่มต้น-หยุด	วัน/ เดือน/ ปี (วว/ ดด/ ปปปป) - วัน/ เดือน/ ปี (วว/ ดด/ ปปปป)
REC Time	เริ่มต้น-หยุด	ชั่วโมง:นาที (hh:mm) - ชั่วโมง:นาที(hh:mm)

ยืนยัน 🖾 ยกเลิก

เวลาบันทึกที่เป็นไปได้

เมื่อใช้ SD ขนาด 2GB:

	รายการ REC			รายก	าร REC
Interval	Power	+Harmonics	Interval	Power	+Harmonics
1sec	13 วัน	3 วัน	1min	1 ปีหรือมากกว่า	3 เดือน
2sec	15 วัน	3 วัน	2min	2 ปีหรือมากกว่า	6 เดือน
5sec	38 วัน	7 วัน	5min	6 ปีหรือมากกว่า	1 ปีหรือมากกว่า
10sec	2.5 เดือน	15 วัน	10min		2 ปีหรือมากกว่า
15sec	3.5 เดือน	23 วัน	15min		3 ปีหรือมากกว่า
20sec	5 เดือน	1 เดือน	20min	10 ^d 1. d	5 ปีหรือมากกว่า
30sec	7.5 เดือน	1.5 เดือน	30min	เบ บหรอมากกวา	7 ปีหรือมากกว่า
			1hour		10 ^d los ^d
		2hours		เบ บหรอมากกวา	
		150/180-cycle	23 วัน	4 วัน	

* ข้อมูลของเหตุการณ์คุณภาพพลังงานไม่ถือเป็นการประเมินเวลาบันทึกที่เป็นไปได้ เวลาบันทึกที่เป็นไปได้สูงสุดจะถูกตัด ให้สั้นลงโดยการบันทึกเหตุการณ์ดังกล่าว ขนาดไฟล์สูงสุดต่อการบันทึกคือ 1GB

* โปรดตรวจสอบให้แน่ใจว่าได้ใช้ SD การ์ดที่ให้มาพร้อมกับเครื่องมือนี้หรือเป็นอะไหล่เสริม

<u>5.5 การตั้งค่าอื่นๆ</u>
5.5 การตั้งค่าอื่น ๆ
กดปุ่ม SET UP 🛶 🔍 🖿 เปลี่ยนแท็บเป็น "Others"
SET UP Basic Meas. Rec. Save Uthers Environment Language English Date format DD/MM/YYYY CH Color VN chi ch2 ch3 ch4 KEW6315 setting Time 06/01/2014 15:26 ID Number 00-001 Buzzer ON Bluetooth OFF
การตั้งค่า Environment ของระบบ
SELUP Dec Save Others
Environment Language English Date format DD/MM/YYYY CH Color VN ch1 ch2 ch3 ch4
KEW0515 setting Time 06/01/2014 15:26
ID Number 00-001
Bluetooth OFF
Dewer Disable auto off
"Language" เลือกภาษาที่จะแสดง
การเลือก
Japanese/ English
* การตั้งค่าเริ่มต้นจะถูกไฮไลต์เป็น <mark>สีเทา</mark> การเปลี่ยนแปลงที่ทำโดยผู้ใช้จะยังคงอยู่หลังจากที่รีเซ็ตระบบ
(ENTER) ยืนยัน (ESC) ยกเลิก
- 77 - KEW6315

"Date format"

เลือกรูปแบบการแสดงวันที่ที่ต้องการ รูปแบบวันที่ที่เลือกจะปรากฏบนการแสดงวันที่บนหน้าจอและในแต่ละหน้าต่างการ ตั้งค่า

"Buzzer"

สามารถปิดเสียงปุ่มกดได้ เสียงเตือนสำหรับการตัดสินความต้องการหรือแรงดันไฟฟ้าแบตเตอรี่ต่ำจะดังแม้จะเลือก "OFF" ไว้ก็ตาม

"Backlight"

การตั้งค่านี้สามารถปิดไฟแบ็คไลต์โดยอัตโนมัติเมื่อผ่านเวลาที่กำหนดหลังจากการกดปุ่มครั้งล่าสุด ไฟแบ็คไลต์จะถูกปิด ภายใน 2 นาทีหลังการทำงานครั้งล่าสุด ขณะที่ KEW 6315 ทำงานโดยใช้แบตเตอรี่

	สำหรับ:	การเลือก					
	ไฟฟ้า AC	Power off in 5 min. / Disable auto-off					
	แบตเตอรี่	Power off in 2 min.					
		* การตั้งค่าเริ่มต้นจะถูกไฮไลต์เป็น สีเทา					
▲ ♥ ย้ายไฮไลต์ไปที่ "Backlight" → (ENTER) แสดงเมนูแบบดึงลง →							
เลือก on∕ off ฟังก์ชันปิดอัตโนมัติ → ^{ENTER} ยืนยัน ^{ESC} ยกเลิก							
"Syst คืนค่าการ	em reset" ตั้งค่าทั้งหมดกลับเป็นค่าเริ่มต่	จ้น ยกเว้น "Language", "Date format", "CH Color" และ "Time"					
	ย้ายไฮไลต์ไปที่ "System reset" → (INTER) แสดงข้อความยืนยัน						
	🔎 เลือก "Yes" หรือ "No"	A CENTER คืนค่าการตั้งค่าเป็นค่าเริ่มต้น					

_{KEW6315} 5.6 ข้อมูลที่บันทึกไว้	5.6 ข้อมูลที่บันทึกไว้
กดปุ่ม SETUP → < <p> → Iliaieuแท็บเป็น "Saved data</p>	a″
SET UP Basic Meas. Rec. Saved REC data Delete d Transfer Forma KEW6315 setting Save sett Read sett	ata. data. t ings.
บันทึก " 🔤 ": ข้อมูลการวัด " 💼 ": พิมพ์หน้าจอ" และ " 🌚 ": ก หน่วยความจำภายใน หากใส่ SD การ์ดในเครื่องมือแล้ว ข้อมู SD การ์ดเพื่อบันทึกข้อมูลในหน่วยความจำภายใน ปลายทางก ที่สามารถบันทึกลงในหน่วยความจำภายในคือ: 3 สำหรับข้อมู	การตั้งค่าข้อมูล" บน " 💽 " SD การ์ดหรือใน " 🕮 " ลเหล่านี้จะถูกบันทึกโดยอัตโนมัติใน SD การ์ด ถอดหรือไม่ใส่ การบันทึกข้อมูลไม่สามารถปรับเปลี่ยนได้ จำนวนไฟล์สูงสุด เลการวัดและ 8 สำหรับข้อมูลอื่น
เมื่อต้องการลบ ให้ถ่ายโอน หรือจัดรูปแ	บบข้อมูลที่บันทึกไว้
SET UP Image: Basic Mass Basic Mass	 เลือกการดำเนินการที่ต้องการ → ENTER ยืนยัน

รายการที่แสดง		การเลือก			
	Total size	ความจุหน่วยความจำรวม			
Capacity	Free size	ความจุของเนื้อที่ว่าง			
Possible	Power only	เวลาบันทึกที่เป็นไปได้โดยประมาณหากพารามิเตอร์ที่จะบันทึก ถูกจำกัดไว้เฉพาะที่เกี่ยวข้องกับพลังงานเท่านั้น			
recording time	Power+ Harmonics	เวลาการบันทึกที่เป็นไปได้โดยประมาณหากพารามิเตอร์ที่จะ บันทึกเกี่ยวข้องกับกำลังและฮาร์โมนิค			
Max number of saved data	Measurement data	จำนวนไฟล์ข้อมูลการวัดที่บันทึกไว้ในหน่วยความจำ * จำนวนไฟล์สูงสุด: 3			
* หน่วยความจำ ภายในเท่านั้น	Settings/ Print screen	จำนวนการตั้งค่า KEW 6315 และไฟล์ข้อมูลการพิมพ์หน้าจอ * จำนวนไฟล์สูงสุด: 8			

"BACK"

เมื่อต้องการกลับไปยังหน้าจอ "Saved data" ให้กดปุ่ม F1

KEW6315

"BACK"

เมื่อต้องการกลับไปยังหน้าจอ "Saved data" ให้กดปุ่ม

"Format"

ฟอร์แมต " 🖾": SD การ์ดหรือ " 💞": หน่วยความจำภายใน ข้อมูลไม่ได้แสดงในลำดับเวลา วันที่และเวลาที่บันทึกไว้ แสดงอยู่ทางด้านขวาของชื่อไฟล์ สำหรับข้อมูลที่ก่อนหน้านี้ถ่ายโอนจากหน่วยความจำภายในไปยัง SD การ์ด เวลา ที่แสดงหมายถึงเวลาที่ถ่ายโอนข้อมูล แถบเลื่อนจะปรากฏขึ้นเมื่อรายการของข้อมูลที่บันทึกไว้เกินพื้นที่แสดงผล

ประเภทของข้อมูลที่บันทึกไว้

(การจัดการไฟล์ข้อมูล

ชื่อไฟล์จะถูกกำหนดโดยอัตโนมัติ หมายเลขไฟล์จะถูกเก็บและบันทึกไว้ แม้หลังจากปิดเครื่องมือแล้ว จนกว่าระบบจะ ได้รับการตั้งค่าใหม่ หมายเลขไฟล์จะเพิ่มขึ้นจนกว่าจะเกินจำนวนไฟล์สงสด

หากมีไฟล์ชื่อไฟล์เดียวกันอยู่แล้ว ไฟล์ในโฟลเดอร์ข้อมูลจะถูกบันทึกเป็นชื่ออื่นที่มีหมายเลขไฟล์ต่างกัน หมายเลขไฟล์จะ ้ถูกเพิ่มขึ้นโดยอัตโนมัติทีละ 1 อย่างไรก็ตาม ไฟล์ "หน้าจอการพิมพ์" และ "การตั้งค่า" จะถูกเขียนทับในกรณีดังกล่าว เมื่อ หมายเลขไฟล์เริ่มต้นจาก "O" หรือใช้ SD การ์ดเดียวกันสำหรับเครื่องมือหลายเครื่อง ควรใช้ความระมัดระวังเป็นพิเศษ เพื่อไม่ให้ไฟล์ที่จำเป็นถูกเขียนทับ เมื่อใช้หมายเลขไฟล์ทั้งหมดสำหรับข้อมูลแต่ละประเภท ไฟล์ในโฟลเดอร์ข้อมูลจะถูก เขียนทับ

หากไฟล์ถูกลบหรือเปลี่ยนชื่อโฟลเดอร์หรือไฟล์บนพีซี การแก้ไขบนอุปกรณ์หรือการวิเคราะห์ข้อมูลด้วยซอฟต์แวร์พิเศษ จะไม่สามารถทำได้ โปรดอย่าเปลี่ยนชื่อโฟลเดอร์หรือไฟล์

<u>KEW6315</u>

"โฟลเดอร์ข้อมูล"							Ű
โฟลเดอร์ใหม่จะถูกสร้างขึ้นต่อการวัดเพื่	อบันทึ	กช่วงเวล	ลาและข้อ	มูลคุณภาพไห	ฟฟ้า		
ชื่อโฟลเดอร์: 🖊 ไ	KEW	/	S	6	(0000	
			I			I	
		S.S.D.	รหัสปลายข วอร์อ	าง	หมาเ	ยเลขข้อมูล	
		5:50 1 M: หน่	ารด วยความจำ	เภายใน	(000)0-9999)	
"ข้อมูลช่วง"							
การตั้งค่า KEW 6315	ชื่อโ	ไฟล์	SUP	S		0000	.KEW
การตั้งค่าการวัด			INI	S		0000	.KEW
การวัดกำลังไฟ			INP	S		0000	.KEW
การวัดฮาร์โมนิก			INH	S		0000	.KEW
			รหั	้สปลายทาง		No ต้อนอ	
			S:SD กา	รัด		140. ขยมูล (0000 0000)	
			M: หน่วย	ความจำภายใน	ſ	(0000-3333)	
"ข้อมูลคุณภาพกำลังไฟ"							
ประเภทเหตุการณ์		ชื่อไห	ไล์ EVT	S		0000	.KEW
รูปคลื่น			WAV	S		0000	.KEW
การเปลี่ยนแปลง V/ A			VAL	S		0000	.KEW
			รร S:SD ก M: หน่	หัสปลายทาง าาร์ด วยความจำภาย	เใน	หมายเลขข้อมูล (0000-9999)	

<u>KEW6315 การตั้งค่าและการโหลดข้อมูล</u> KEW 6315 การตั้งค่าและการโหลดข้อมูล	KEW6315
SET UP • 66/01/2014 Basic Meas. Rec. Saved data Others REC data	 สอกการดำเนินการที่ต้องการ แลือกการดำเนินการที่ต้องการ แล้อกการอำเนินการที่ต้องการ

"Save settings"

. บันทึก " 🍩 ": การตั้งค่าข้อมูลบน " 🏧 : SD การ์ดหรือใน " 🗱 : หน่วยความจำภายใน ข้อมูลไม่ได้แสดงในลำดับเวลา วันที่ และเวลาที่บันทึกไว้แสดงอยู่ทางด้านขวาของชื่อไฟล์ สำหรับข้อมูลที่ก่อนหน้านี้ถ่ายโอนจากหน่วยความจำภายในไปยัง SD การ์ด เวลาที่แสดงหมายถึงเวลาที่ถ่ายโอนข้อมูล แถบเลื่อนจะปรากฏขึ้นเมื่อรายการของข้อมูลที่บันทึกไว้เกินพื้นที่แสดงผล

W6315				<u>KEW6315 การตั้งค่าและการโหลดข้อมูล</u>			
"Space"							
• ข้อมูลสื่อบันทึกข้อมูลสา	มารถตรวจสอบได้ด้วยปุ่ม 🤇	F4	กดปุ่ม (Inter) เพื่	อปิดหน้าต่างข้อมูล โปรดดู " Space "			
(หน้า 84) สำหรับรายล	ะเอียดเพิ่มเติม						
"BACK"							
 ສ່ ຍ ຍ ທຸຍ	ມ "ທິມ ⊔	C	F1				
เมอตองการกลบเบยง	หนางอ "Saved data" เหกดบุร						
สามารถบันทึก	การตั้งค่าต่อไปนี้สำ	หรั	บ KEW 6315				
การตั้งค่า Basic			การตั้งค่า Mea	surement			
ราย	การการตั้งค่า			รายการการตั้งค่า			
	Wiring			Measurement cycle			
Vo	ltage range		Demand	Inspection cycle			
	VT ratio			Target			
Non	Nominal voltage			THD(total harmonic distortion) calc.			
Clamp.	Clamp/ Current range		Harmonics	Allowable range			
CT ratio				MAX HOLD			
DC range				Threshold for Hysteresis			
Frequency				Threshold for Transient			
			Power	Threshold for Swell			
2 L O.L			quality	Threshold for Dip			
การตงคา Other	97			Threshold for INT			
รายเ	าารการตั้งค่า			Threshold for Inrush current			
Environment	Date format		Flicker	Filter coefficient (Ramp)			
KFW 6315 setting	ID number		Capacitance	Target PE			
The the control containing	Buzzer		calculation	laiget Fi			
			การตั้งค่า Reco	ording			
				รายการการตั้งค่า			
			Recording	Harmonics			
			item	Power quality (event)			
				Interval			
			Recording method	Start			
				REC Start			
			Constant meas.	REC End			

Time period rec.

Rec. period

Time period

Start – End

Start – End

"Read settings"

อ่าน " 🖤 ": การตั้งค่าข้อมูลจาก " 🔤 ": SD การ์ดหรือใน " 🐯 ": หน่วยความจำภายใน ข้อมูลไม่ได้แสดงในลำดับเวลา วันที่และเวลาที่บันทึกไว้แสดงอยู่ทางด้านขวาของชื่อไฟล์ สำหรับข้อมูลที่ก่อนหน้านี้ถ่ายโอนจากหน่วยความจำภายใน ไปยัง SD การ์ด เวลาที่แสดงหมายถึงเวลาที่ถ่ายโอนข้อมูล แถบเลื่อนจะปรากฏขึ้นเมื่อรายการของข้อมูลที่บันทึกไว้เกิน พื้นที่แสดงผล

"Read" กดปุ่ม F2 (Transfer) และเลือก "Yes" บนข้อความยืนยันเพื่อถ่ายโอนข้อมูลที่เลือก

"Internal"/ "SD card"

การกดปุ่ม F3 สามารถสลับระหว่าง "Internal memory" และ "SD Card" และไอคอนที่เกี่ยวข้องจะแสดงที่ ด้านซ้ายบนของหน้าจอ

"Space"

เมื่อต้องการกลับไปยังหน้าจอ "Saved data" ให้กดปุ่ม

<u>แสดงรายการของค่าที่วัดได้</u>

KEW6315

		สัญ	มูลักษณ์ที่แสดงบน LCD		
V*1	แรงดันไฟฟ้าเฟส	VL*1	แรงดันไฟฟ้าของสาย	A	กระแสไฟฟ้า
Р	+ การใช้ กำลังไฟฟ้า การนำมาใช้ ที่ใช้จริง - ใหม่	Q	+ ล้าหลัง กำลังไฟฟ้า ที่สูญเสีย ₋ นำหน้า	S	กำลังไฟฟ้าปรากฏ
PF	พาวเวอร์ + ล้าหลัง แฟกเตอร์ ₋ นำหน้า	f	ความถี่		
DC1	แรงดันไฟฟ้า อินพุตแอนาล็อกที่ 1ch	DC2	แรงดันไฟฟ้า อินพุตแอนาล็อกที่ 2ch		
An*2	กระแสไฟฟ้าเป็นกลาง	PA ^{*3}	ความแตกต่ + ล้าหลัง างของเฟสข อง V/A — นำหน้า	C*3	การคำนวณความจุไฟฟ้า

^{*1} หน้าจอ W: การแสดง V และ VL สามารถ "ปรับแต่งได้" เมื่อเลือก "3P4W"

^{*2} หน้าจอ W: "An" จะแสดงเฉพาะเมื่อ "3P4W" ถูกเลือก

^{*3} หน้าจอ W: การแสดง PA และ C สามารถเป็น ["]ปรับแต่ง" ด้วยปุ่ม **(F4)** (customize) แรงดันไฟฟ้าของสายจะถูก แปลงเป็นแรงดันไฟฟ้าเฟสเพื่อกำหนดกระแสไฟฟ้าและมุมเฟสสำหรับ "PA" ของ 3P3W3A

ตัวอย่าง) ค่าชั่วขณะที่วัดได้ภายใต้ 1P3W-2 (2 ระบบ)

<u>แสดงรายการของค่าที่วัดได้</u>

ย่อ/ขยายการแสดงผล

ตัวอย่าง: หน้าจอแยก 8 ส่วน

เลือก 4 หรือ 8 ค่าและแสดงค่าบนหน้าจอเดียว ข้อความที่แสดงจะขยายเพื่อให้มองเห็นได้ง่าย

"รายการที่แสดง"

เลือกรายการที่จะแสดงในแต่ละคอลัมน์ จากนั้น รายการที่เลือกได้จะถูกแสดงทางด้านขวา

KEW6315

ตัวอย่างต่อไปนี้แสดง 1P3W-2 (เฟสเดียว 3 สาย 2 ระบบ)

"เปลี่ยนรายการที่แสดงบนกราฟแนวโน้ม"

กด 💭 แป้นและเปลี่ยนรายการที่แสดงบนกราฟแนวโน้ม

"Σ/CH"

กดปุ่ม (Σ/CH) เพื่อสลับกราฟ: วิธีแรกเพื่อแสดงผลรวมและค่ารวมต่อระบบ และอีกวิธีคือการแสดงค่าต่อ ch การเลือก "Σ" หรือ "CH" จะมีผลสำหรับกราฟแนวโน้มทั้งหมด เมื่อเลือก "Σ" ขณะที่ A: ค่าปัจจุบันของ rms ถูกเลือก สำหรับ 3P4W An: ค่าปัจจุบันที่เป็นกลางจะแสดงขึ้นบนกราฟแนวโน้ม

"แสดง List" กดปุ่ม F3 (List) เพื่อแสดงค่าทั้งหมดบนรายการ

KEW6315						<u>6.2 ค่าแบบรวมยอด "Wh"</u>
6.2 ค่าแบบรว	ม "Wh"					
กดปุ่ม (W/Wh) 📥	F1 แสด	งหน้าจอ	สำหรับ "Wh":	ด่าก	กรรวมยอด	
ตัวอย่าง) 1P3W-2	(เฟสเดียวสามส	เ าย, 2 ระ	ະບບ)			
	W/Wh			-	06/01/2014	
เวลาที่ใช้ไป	Elapse	d time	00000:00	:05		
	And free	WP+ :	249.887	Wh		
	Active	WP-:	0.000	Wh (
	Annavant	WS+ :	250.837	VAh	12Σ	Σ: จำนวนรวม
	Apparent	WS- :	0.000	VAh	Σ	Σ:ผลรวมต่อระบบ
	Peactive	WQi+:	0.000	var	1ch 2ch	
	Reactive	WQc+:	-11.286	var		
	DEMAND					, ,
กำลังไฟฟ้าที่ใช้ในช่ว	งเวลาหนึ่งจะแส	ดงเป็นก	ารใช้พลังงาน	รวม		

การใช้พลังงานแบบรวมใช้เพื่อคำนวณอัตราค่าไฟฟ้าหรือเพื่อควบคุมการใช้พลังงาน

				สัญ	ลักษณ์ที่แส	ดงบา	แหน้าจอ				
WP	Active power energy	+ -	การใช้ การนำมาใช้ ใหม่	WQ	Reactive power energy	+ -	ล้าหลัง นำหน้า	WS	Apparent power energy	+ -	การใช้ การนำมาใช้ ใหม่

<u>6.2 ค่าแบบรวม "Wh"</u> ตัวอย่าง) 1P3W-2 (เฟสเดียวสามสาย, 2 ระบบ)

"เปลี่ยนระบบที่แสดง"

กดปุ่ม 🔍 🗩 เพื่อสลับระบบที่แสดง โปรดดู "**การตั้งค่าระบบการเดินสายไฟ**" (ห**น้า 49**) ในคู่มือเล่มนี้

"เปลี่ยน ch ที่แสดง"

กดปุ่ม 🦨 เพื่อสลัช่องทางที่แสดง โปรดดู "**การตั้งค่าระบบการเดินสายไฟ**" ใน (**หน้า 49**) ในคู่มือเล่มนี้

"Demand"

กดปุ่ม (Demand) เพื่อแสดงหน้าจอสำหรับค่าความต้องการ โปรดดู "6.3 ความต้องการ" (หน้า 102)

ในคู่มือเล่มนี้

10010	
3 "Dem	and"
กดปุ่ม (W/Wh) → (♥) แ	F1 แสดงหน้าจอสำหรับค่าความต้องการ เลี่ยนหน้าจอเพื่อแสดงผลลัพธ์การวัดความต้องการในรปแบบต่างๆ
การแสดง	ู้ เค่าที่วัดได้
🎒 ย้ายไฮไ	ลต์สีน้ำเงินไปที่ "Meas."
	W/Wh □ - ● ⁰⁰ /01/2014 Time left 00:29:55
	DEM Target 100.0 kW
	DEM Guess 179.9 kW
	DEM Present 0.499 kW
ความต้องการ ความต้องการ	DEM Max 0.499 kW 06/01/2014 16:42:23 kW Image: Constraint of the second seco
	รายการที่แสดงบน LCD
เวลาที่เหลือ (time left)	รายการที่แสดงบน LCD ช่วงความต้องการจะถูกนับถอยหลัง
เวลาที่เหลือ (time left) DEM Target	รายการที่แสดงบน LCD ช่วงความต้องการจะถูกนับถอยหลัง ค่าเป้าหมายของความต้องการ
เวลาที่เหลือ (time left) DEM Target DEM Guess	รายการที่แสดงบน LCD ช่วงความต้องการจะถูกนับถอยหลัง ค่าเป้าหมายของความต้องการ ค่าความต้องการที่คาดการณ์ไว้ (กำลังไฟเฉลี่ย) เมื่อช่วงความต้องการที่กำหนดไว้ล่วงหน้าผ่านไปภายใต้ โหลดที่ตั้งไว้ล่วงหน้า (<u>เค่าปัจจุบัน) x (ค่าที่ตั้งไว้)</u> (เวลาที่ใช้ไป) * การรวมยอดและการคำนวณจะเสร็จสิ้นเมื่อเวลาผ่านไป
เวลาที่เหลือ (time left) DEM Target DEM Guess DEM Present	รายการที่แสดงบน LCD ช่วงความต้องการจะถูกนับถอยหลัง ค่าเป้าหมายของความต้องการ ค่าความต้องการที่คาดการณ์ไว้ (กำลังไฟเฉลี่ย) เมื่อช่วงความต้องการที่กำหนดไว้ล่วงหน้าผ่านไปภายใต้ โหลดที่ตั้งไว้ล่วงหน้า (ค่าปัจจุบัน) x (ค่าที่ตั้งไว้) (เวลาที่ใช้ไป) * การรวมยอดและการคำนวณจะเสร็จสิ้นเมื่อเวลาผ่านไป ค่าความต้องการ (กำลังไฟเฉลี่ย) ภายในช่วงความต้องการ <u>"WP+ x 1 ชั่วโมง"</u> * การรวมยอดและการคำนวณจะเสร็จสิ้นเมื่อเวลาผ่านไป

ค่าชั่วขณะ "W"

กดปุ่ม 🕞 (W) เพื่อแสดงค่าชั่วขณะบนหน้าจอ โปรดดู "**6.1 ค่าชั่วขณะ "W"**" (**หน้า 92**) ในคู่มือเล่มนี้สำหรับ

รายละเอียดเพิ่มเติม

<u>การเปลี่ยนแปลงในช่วงเวลาที่กำหนด</u>

การเปลี่ยนแปลงช่วงเวลาที่ระบุ

	รายการที่แสดงบน LCD
เวลาที่เหลือ (time left)	ช่วงความต้องการจะถูกนับถอยหลัง
DEM P	เปอร์เซ็นต์ของค่าปัจจุบันเทียบกับค่าเป้าหมาย <u>ค่าปัจจุบัน</u> ค่าเป้าหมาย จะแสดงขึ้น
DEM G	เปอร์เซ็นต์ของค่าที่คาดการร์เทียบกับค่าเป้าหมาย <u>ค่าที่คาดการณ์</u> ค่าเป้าหมาย จะแสดงขึ้น

้วงกลม (เส้นทึบ) แสดงถึงค่าสูงสุดที่ช่วง V และ A และความยาวของเส้นแสดงถึงค่าแรงดันไฟฟ้าและกระแสไฟฟ้า rms ้มุมระหว่างเส้นแสดงถึงความ[้]สัม[ุ]พันธ์ของเฟสโดยอ้างอิงกับ V1

้ส่ำหรับ 3P3W3A/3P4W อัตราส่วนความไม่สมดูลจะแสดงขึ้นด้วย ในขณะที่แรงดันไฟฟ้าและกระแสไฟฟ้าที่วัดได้มี ความสมดุล เวกเตอร์ต่อไปนี้จะแสดงขึ้น

"A x กำลังขยายที่ต้องการ"
 (F2) : สลับการขยายของรูปคลื่นกระแสไฟฟ้า (แนวตั้ง) 0.1 • 0.5 • 1 • 2 • 5 • 10 "t x กำลังขยายที่ต้องการ" (F3) : สลับการขยายแกนเวลา (แนวนอน) 1 • 2 • 5 • 10 *เวลา "full scale"
 0.1 → 0.5 → 1 → 2 → 5 → 10 →^{*เวลา} "t x กำลังขยายที่ต้องการ" (щวนอน) 1 → 2 → 5 → 10 →^{*เวลา} "full scale"
"t x กำลังขยายที่ต้องการ"
F3 : aavanse e 1 + 2 + 5 + 10 "full scale"
"full scale"
"full scale"
"full scale"
🖚 . อึงเว่าวาวรซึ่งว่าวารรงของเชื่องไว้ของเว และเอื้อวาวรรงของเชื่องนางเสมโองเว้าโบงเว้า
(F4) : คนคากการของคากการของอุทยายหน้าสอนแบลงทุงหมด และเสอกการของอุทยาเรสม เดืออดเน่มด
66 สาร์โมบิก
กดบุม
าเวยเซติการที่อนาเกินาร์ เพยพง
กดปุ่ม (Graph)
ตวอยาง) ขอมูลตอเบนแสดงถง 3P4W (สามเพล 4 ลาย) ขณะทเลอก "Linear" และ "Full-scale display"
V: 241.1 241.1 238.3 V THD: 655.35 655.35 655.35 %
1ch
50 ZCh 3ch
List LOG Zoom V/A/P
สัญลักษณ์ที่แสดงบน LCD
แรงดันไฟฟ้า
V ่สำหรับ 3P3W3A แรงดันไฟฟ้าของสาย rms A กระแสไฟฟ้า
จะปรากฏขน ความเพี้ยนฮาร์โมนิกรวมของแรงดันไฟฟ้าจะแสดงขึ้นในขณะที่ "V" ปรากฏขึ้น และปัจจัยความเพี้ยนรวม
THD ของกระแสไฟฟ้าจะแสดงขึ้น ในขณะที่ "A" ปรากฏขึ้น ความเพี้ยนฮาร์โมนิกรวมคำนวณตามวิธีคำนวณ THD ที่เลือก
+ เข้า ผลรวมของแต่ละ ch/ + เข้า P กำลังไฟฟ้าที่ใช้จริงต่อ ch ΣP กำลังไฟฟ้าที่ใช้จริงรวม - ออก

ในตัวอย่างด้านบน "Linear" และ "full-scale" ถูกเลือก ในกรณีนี้ ขีดจำกัดบนของอัตราเนื้อหาคือ "100%" และ ฮาร์โมนิกทั้งหมด ลำดับที่ 1 ถึง 50 จะแสดงบนหน้าจอ

รายการที่แสดงบน LCD			
อัตราของเนื้อหา	เนื้อหาฮาร์มอนิกของแต่ละลำดับเทียบกับคลื่นพื้นฐานที่ 1		

ตัวอย่าง) ข้อมูลต่อไปนี้แสดงถึง 3P4W (สามเฟส 4 สาย) ขณะที่เลือก "LOG" และ "Zoom"

เมื่อเลือก "LOG" (ลอการิทึม) 10% จะเป็นเปอร์เซ็นต์สูงสุดของแกนตั้งและฮาร์โมนิกที่แสดงจะถูกจำกัดไว้ที่ลำดับที่ 15 กดปุ่ม 🔍 🔎 เพื่อเลื่อนหน้า รูปคลื่นพื้นฐานของลำดับที่ 1 เป็นแบบคงที่และไม่เคลื่อนย้าย แถบสีขาวแสดง เปอร์เซ็นต์ของหน้าที่ช่อนไว้ และแถบสีส้มเข้มแสดงเปอร์เซ็นต์ของหน้าที่แสดงอยู่

KEW6315	การแสดงฮาร์มอนิกบนกราฟแท่ง					
ตัวอย่าง) 3P4W (ส [.]	ตัวอย่าง) 3P4W (สามเฟส 4 สาย) : พร้อม "LOG" และ "Zoom"					
เกินค่าแกน ค่าสูงสุด สีของกราฟ	50.00Hz เกินค่าเกณฑ์ 1 ง่วงที่ยอมรับได้					
	⁰ 1 <u>2 5</u> 10 15					
	รายการที่แสดงบนกราฟ					
เกินค่าแกน	แสดงเมื่ออัตราเนื้อหาฮาร์โมนิกของแต่ละลำดับมากกว่า 10% อัตราของเนื้อหาฮาร์โมนิกของรูปคลื่นพื้นฐานที่ 1 คือ "100%" ดังนั้น จึงเกินค่าแกนใน ออแสดงผล "LOG" เสมอ					
ค่าสูงสุด	 ค่าสูงสุดที่บันทึกไว้ในระหว่างการวัดจะแสดง ค่าเหล่านี้สามารถรีเซ็ตวิธีการใดๆ ต่อไปนี้ * การเปลี่ยนแปลงการตั้งค่า * เริ่มต้นการบันทึก หรือ * การถดแบบยาว (2 วินาทีหรือนานกว่า) ของปม (ESC) 					
สีของกราฟ เบื่อใช้ช่องทางการก้องลายช่อง แต่อะกราฟอะแสดงเป็นสีที่ต่างกับ						
เกินค่าเกณฑ์	แสดงเมื่อค่าที่วัดได้เกินช่วงที่ยอมรับได้ที่ตั้งไว้ล่วงหน้า					
ช่วงที่ยอมรับได้	ช่วงที่ยอมรับได้ ค่าที่ตั้งไว้โดยค่าเริ่มต้นและเป็นไปตาม IEC61000-2-4 Class3 เมื่อต้องการเปลี่ยนช่วง ให้เลือก "Edit allowable range." ในการตั้งค่า "Measurement"					

<u>การแสดงฮาร์มอนิกบนกราฟแท่ง</u>

"เปลี่ยน ch ที่แสดง"

กดปุ่ม 💭 เพื่อเปลี่ยน ch ที่แสดง รายละเอียดเกี่ยวกับความสัมพันธ์ระหว่างการกำหนดค่าการเดินสายไฟและ ch

มือธิบายไว้ใน "**การตั้งค่าระบบการเดินสายไฟ**" (**หน้า 49**)

"List"/"Graph"

กดปุ่ม (F1) เพื่อแสดงฮาร์โมนิกแรงดันไฟฟ้า/กระแสไฟฟ้า/กำลังไฟ ตั้งแต่ลำดับที่ 1 ถึงลำดับที่ 50 ในรูปแบบ รายการหรือกราฟิก สามารถตรวจสอบได้เฉพาะอัตราของเนื้อหาฮาร์โมนิคบนหน้าจอแสดงผลกราฟ แต่สามารถ ตรวจสอบค่า rms/ อัตราของเนื้อหา/ มุมเฟส* ตามลำดับบนหน้าจอแสดงรายการ

* ในขณะที่เลือกและแสดง "P"(กำลังไฟ) ความแตกต่างของเฟสระหว่างแรงดันไฟฟ้าและกระแสไฟฟ้าจะปรากฏขึ้น ขาเข้า: ±0° ถึง ±90°, ขาออก: ±90° ถึง 180°

"LOG"/ "Linear"

กดปุ่ม **(F2)** (LOG/Linear) เพื่อสลับโหมดการแสดงผล จอแสดงผลเชิงเส้นที่มีเครื่องหมายขีด 0% - 100% และ จอแสดงผลลอการิทึมที่มีเครื่องหมายขีด 0.1% - 10% สามารถสลับได้บนแกนแนวตั้ง มีประโยชน์การวิเคราะห์ ฮาร์โมนิกในระดับต่ำ

"Full"/"Zoom"

กดปุ่ม **F3** (Zoom/Full) เพื่อซูมและแสดงฮาร์โมนิกสิบห้ารายการบนหน้าจอเดียว ฮาร์โมนิกแรงดันไฟฟ้า/ กระแสไฟฟ้า/ กำลังจะแสดงแยกกันในรูปแบบกราฟิก กดปุ่ม **(())** เพื่อเลื่อนหน้า

"V/A/P/ΣΡ"

กดปุ่ม **(F4)** (V/A/P/ΣP) และเลือกพารามิเตอร์ที่จะวิเคราะห์

การแสดงรายการฮาร์โมนิก

กดปุ่ม 🕞 (List) เพื่อแสดงรายการฮาร์โมนิก

เช่น) "P: เพาเวอร์ฮาร์โมนิค" และ "กำลังไฟ" ของ 1P3W-2 (เฟสเดียว 2 สาย 2 ระบบ) แสดงอยู่ในรายการ

16.				_ 06/01/2014
Р	P1_1	P2 1	P1_2	P2_2
1	88.5	89.1	-20.4	89.1w
2	0.0	0.0	0.0	0.0kW
3	0.0	0.0	0.0	0.0kw
4	0.0	0.0	0.0	0.0kw
5	0.0	0.0	0.0	0.0kw
6	0.0	0.0	0.0	0.0kw
7	0.0	0.0	0.0	0.0kw
8	0.0	0.0	0.0	0.0kw
9	0.0	0.0	0.0	0.0kw
10	0.0	0.0	0.0	0.0kw
11	0.0	0 0	0 0	0 0
G	raph	Rate		ΣΡ

ค่า rms อัตราของเนื้อหา และมุมเฟสของฮาร์โมนิคแรงดันไฟฟ้า/กระแส/กำลัง ตั้งแต่ลำดับที่ 1 ถึง 50 สามารถแสดงใน รูปแบบรายการตามลำดับ

รายการที่แสดงบน LCD							
V	แรงดันไฟฟ้า *1			А	กระแสไฟฟ้า		
D *2	กำลังไฟฟ้าที่ใช้จริงต่อ	+	เข้า	ים י צ חיצ	ผลรวมของแต่ละ ch /	+	เข้า
P -	ch	-	ออก	28-	กำลังไฟฟ้าที่ใช้จริงรวม	-	ออก

^{*1} สำหรับ 3P3W3A แรงดันไฟฟ้าของสาย rms จะปรากฏขึ้น

^{*2} ตัวอักษรและตัวเลขที่แสดงอยู่ด้านบนแสดงถึงพารามิเตอร์ที่แสดง และอักขระตัวเลขหรือหมายเลขระบบ หากมี ช่องว่างระหว่างตัวอักษรและตัวเลขต่อไปนี้ หมายเลขที่แสดง แสดงถึงหมายเลขระบบ ในกรณีนี้ ค่าที่แสดงเป็น ผลรวมต่อระบบ หาก "P" แสดงอยู่อย่างเดียว ค่าที่แสดงจะเป็นจำนวนรวม <u>การแสดงรายการฮาร์โมนิก</u>

					_
Шь				- 06/01/201 17:03:41	4
Α	A1	A2	A3	A4	
1	450.0	448.9	299.7	448.8 /	
2	0.0	0.0	0.0	0.0	
3	0.0	0.0	0.0	0.0	
4	0.0	0.0	0.0	0.0	
5	0.0	0.0	0.0	0.0	A
6	0.0	0.0	0.0	0.0	₩ V
7	0.0	0.0	0.0	0.0	
8	0.0	0.0	0.0	0.0	
9	0.0	0.0	0.0	0.0	
10	0.0	0.0	0.0	0.0	
G	raph	Rate	0.0	V/A/P]
C	F1	F2		(F4)	J

"เปลี่ยนแปลงลำดับฮาร์โมนิกที่แสดง"

กดปุ่ม 👿 เพื่อเลื่อนหน้าในแนวตั้ง

"Graph" / "List"

กดปุ่ม F1 เพื่อแสดงฮาร์โมนิกแรงดันไฟฟ้า/กระแสไฟฟ้า/กำลังไฟ ตั้งแต่ลำดับที่ 1 ถึงลำดับที่ 50 ในรูปแบบ รายการหรือกราฟิก เฉพาะอัตราของเนื้อหาแบบฮาร์โมนิกเท่านั้นที่สามารถตรวจสอบบนหน้าจอแสดงผลของกราฟได้

้ "อัตราเนื้อหา"/"มุมเฟส"/ค่า RMS (กำลัง)"

กดปุ่ม F2 (Rate/ DEG/ RMS) เพื่อเปลี่ยนรายการที่แสดงอยู่ในรายการ ในขณะที่ "V": แรงดันไฟฟ้าหรือ "A": กระแสไฟฟ้าจะแสดงบนหน้าจอ Rate/ DEG (มุมเฟสที่มีพื้นฐาน V1 (Oº)) / RMS สามารถสลับได้ ขณะที่ "P" (ΣP): กำลังไฟจะแสดงขึ้น Rate/ DEG (มุมเฟสแรงดันไฟฟ้า/กระแสไฟฟ้าต่อช่องทาง) / Power จะสลับได้

"V"/"A"/"P/ΣP"

กดปุ่ม **F4** (V/A/P/ΣP) และเลือกพารามิเตอร์ที่จะวิเคราะห์: V: แรงดันไฟฟ้า/ A: กระแสไฟฟ้าt/ P: กำลังไฟ (ΣP: ผลรวมต่อระบบ, จำนวนรวม)

KEW6315

คุณภาพกำลังไฟ 6.7

_{กดปุ่ม} ขั้น การ กลปุ่ม เพื่อแสดงหน้าจอคุณภาพกำลังไฟ มีจจัยที่ส่งผลทำให้คุณภาพกำลังไฟลดลงและอาการ

คุณภาพ กำลังไฟ	รูปคลื่น	อาการ	ผลข้างเคียง
ฮาร์โมนิก		วงจรอินเวอร์เตอร์และไทริสเตอร์ (วงจรควบคุมเฟส) ใช้สำหรับวงจร ควบคุมอุปกรณ์ทั่วไป วงจรเหล่านี้ ส่งผลต่อกระแสและทำให้เกิด ฮาร์โมนิก	ความล้าของตัวเก็บประจุและ เครื่องปฏิกรณ์ เสียงออดจาก หม้อแปลงไฟฟ้า อุปกรณ์ตัด วงจรทำงานผิดปกติ การ กะพริบในหน้าจอหรือ สัญญาณรบกวนในสเตอริโอ เนื่องจากกระแสไฟที่มี ส่วนประกอบของฮาร์โมนิก
ไฟเกิน		กระแสไฟไหลเข้าเกิดขึ้นเมื่อสวิตช์ สำหรับสายไฟเปิดอยู่ จากนั้น แรงดันไฟฟ้าจะเพิ่มขึ้นทันที	
ไฟตก		กระแสไฟไหลเข้าเกิดขึ้นเมื่อโหลด มอเตอร์ถูกเปิดใช้งาน และ กระแสไฟตกเกิดขึ้น	การปิดเครื่องมือหรือรีบูต หรือรีเซ็ตบน PC และเครื่อง ทางธุรกิจอาจเกิดขึ้นได้
INT		แหล่งจ่ายไฟถูกขัดจังหวะเป็น เวลาหนึ่งวินาทีเนื่องจากฟ้าผ่า	

งยทลงผลทาเห	<u>กสงผลทาไหคูณภาพกาลงไฟลดลงและอาการ KEW6</u>				
คุณภาพ กำลังไฟ	รูปคลื่น	อาการ	ผลข้างเคียง		
ภาวะชั่วคราว โรงดันไฟฟ้าเกิน (กระตุ้น)		ความล้มเหลวในการติดต่อที่ อุปกรณ์ตัดวงจร แม่เหล็ก หรือรีเลย์	ความเสียหายต่อแหล่งจ่ายไฟ หรือการรีเซ็ตอุปกรณ์อาจเกิด ขึ้นเนื่องจากแรงดันไฟฟ้า ผันผวนอย่างรุนแรง (สไปค์)		
กระแสไฟไหล เข้า		กระแสไฟฟ้าขนาดใหญ่ (ไฟ กระชาก) ไหลทันทีบนอุปกรณ์ที่ มีมอเตอร์ หลอดไส้ และตัวเก็บ ประจุแบบแบนเมื่อเปิดเครื่อง	อาจมีผลกระทบต่อหน้าสัมผัส แบบเชื่อมสำหรับสวิตช์เปิด/ ปิด ฟิวส์ขาด การสะดุดของ เบรกเกอร์ วงจรเรียงกระแส และแรงดันไฟฟ้าของ แหล่งจ่ายไฟที่ผันผวน		
อัตราที่ไม่สมดุล		การรับโหลดหนักในเฟสเฉพาะ เนื่องจากความผันผวนของการรับ โหลดของสายไฟหรือการขยาย การติดตั้งอย่างมาก เกิดการบิดเบือนของรูปคลื่นของ แรงดันไฟฟ้า/กระแสไฟฟ้า แรงดันไฟฟ้าตกและลำดับเชิงลบ	อิทธิพลต่อแรงดัน กระแสไฟฟ้า การทำงานของ มอเตอร์เกิดขึ้น แรงดันลำดับ ลบและฮาร์โมนิกเกิดขึ้น		
กะพริบ	RMS	โหลดมากเกินไปเกิดขึ้นในบางเฟสเ นื่องจากการเพิ่มขึ้นและลดลง ของโหลดที่เชื่อมต่อกับแต่ละเฟส เช่น สายจ่ายไฟ หรือการใช้งาน หนักของ เป็นผลให้สังเกตพบการบิดเบี้ยว ของรูปคลื่นของแรงดันไฟฟ้าและ กระแสไฟฟ้า แรงดันไฟตกและ แรงดันไฟย้อนกลับจากอุปกรณ์	แรงดันไฟฟ้าและฮาร์โมนิกที่ ไม่สมดุลหรือกลับด้านเกิดขึ้น และส่งผลให้มอเตอร์ไม่เสถียร เบรกเกอร์ตัดการทำงาน หรือเกิดความร้อนเนื่องจาก โอเวอร์โหลด		

"INT"

เมื่อตรวจพบสถานะ INT บน ch ทั้งหมดที่เลือกตามการกำหนดค่าการเดินสาย จะถือเป็นจุดเริ่มต้นของเหตุการณ์ เมื่อ สถานะ INT สิ้นสุดที่ ch การวัดใดๆ จะถือเป็นจุดสิ้นสุดของเหตุการณ์

"ไฟเกิน"/ "ตกชั่วขณะ"/ "กระแสไฟไหลเข้า"/ "ภาวะชั่วคราว"

เมื่อแรงดันไฟฟ้าหรือกระแสไฟฟ้าตกเข้าสู่สถานะเหตุการณ์ใดๆ บนช่องทางการวัดใดๆ ที่เลือกตามระบบสายไฟ จะถือเป็นจุดเริ่มต้นของเหตุการณ์ เมื่อสถานะสิ้นสุดในการวัดทั้งหมด จะถือเป็นจุดสิ้นสุดของเหตุการณ์

<u>การแสดงเหตุการณ์ที่บันทึกไว้</u>

<u>การวัดกระแสไฟฟ้าเกิน/ ตกชั่วขณะ/ ชั่วขณะ / กระแสไฟไหลเข้า</u>

แต่ละเหตุการณ์จะตรวจพบด้วยค่า r.m.s. ในรูปแบบคลื่นที่ไม่มีช่องว่างหนึ่งรูปแบบและการทับซ้อนกันครึ่งคลื่น จุดเริ่มต้น ของรูปคลื่นที่ตรวจพบเหตุการณ์แรกถือเป็นจุดเริ่มต้นของเหตุการณ์ หากตรวจไม่พบเหตุการณ์เพิ่มเติมในรูปคลื่นต่อไปนี้ จุดเริ่มต้นของรูปคลื่นจะถือเป็นจุดสิ้นสุดของเหตุการณ์ เหตุการณ์ที่ตรวจจับได้จะถือว่าดำเนินต่อไประหว่างการเริ่มต้นจนถึง การสิ้นสุดของการตรวจจับเหตุการณ์

ตัวอย่างการตรวจจับค่าตกชั่วขณะ

* ตรวจพบ INT ด้วยวิธีการเดียวกัน

<u>KEW6315</u>

<u>การตรวจหาภาวะชั่วคราว</u>

รูปคลื่นแรงดันไฟฟ้าจะถูกตรวจสอบที่ประมาณ 40ksps โดยไม่มีช่องว่าง เพื่อคำนวณและตรวจสอบเหตุการณ์ชั่วคราว ทุกๆ 200 ms จุดเริ่มต้นของช่วงเวลา 200 ms ที่ตรวจพบชั่วคราวครั้งแรกถือเป็นจุดเริ่มต้นของเหตุการณ์ หากตรวจไม่ พบเหตุการณ์เพิ่มเติมในช่วงเวลา 200 ms ต่อจากนี้ จุดเริ่มต้นของช่วงเวลาจะถือเป็นจุดสิ้นสุดของเหตุการณ์ ภาวะ ชั่วคราวที่ตรวจพบจะถือว่าดำเนินต่อไประหว่างจุดเริ่มต้นจนถึงจุดสิ้นสุดของการตรวจจับเหตุการณ์

<u>การแสดงเหตุการณ์ที่บันทึ</u>กไว้

<u>บันทึกข้อมูล</u>

เมื่อมีเหตุการณ์เกิดขึ้น ประเภทเหตุการณ์ เวลาเริ่มต้น/สิ้นสุด และค่าที่วัดได้จะถูกบันทึกพร้อมกับข้อมูลต่อไปนี้

รูปแบบคลื่นของเหตุการณ์

รูปคลื่นและข้อมูลเหตุการณ์บน ch ทั้งหมดจะถูกบันทึกไว้เป็นเวลาประมาณ 200 ms (50 Hz: 10 รอบ, 60 Hz: 12 รอบ) ที่ 8192 จุดทั้งหมด เมื่อเหตุการณ์ต่างๆ เกิดขึ้นภายใน 1 วินาที เฉพาะรูปคลื่นที่มีเหตุการณ์ที่มีลำดับความสำคัญสูงสุด เท่านั้นที่จะถูกบันทึก อย่างไรก็ตาม หากเหตุการณ์ประเภทเดียวกันเกิดขึ้นในเวลาเดียวกัน เหตุการณ์ที่มีค่าสูงสุด (ลึกที่สุด) จะถูกบันทึก หากค่าสูงสุด (ลึกที่สุด) เท่ากัน ระบบจะบันทึกค่าที่มีระยะเวลานานกว่า สำหรับช่องทาง ไม่มี ลำดับความสำคัญ (ลำดับความสำคัญ): แรงดันไฟฟ้าภาวะชั่วคราว -> ชั่วขณะ -> ตกชั่วขณะ -> เกิน -> กระแสไฟ ไหลเข้า

ความผันแปร RMS

ความผันแปรของค่าแรงดันไฟฟ้า/กระแสไฟฟ้า rms และข้อมูลเหตุการณ์บน ch ทั้งหมดจะถูกบันทึกไว้เป็นเวลา 1 วินาที

ตัวอย่างการตรวจหาค่าตกชั่วขณะ สำหรับประมาณ 800ms (ข้อมูลที่บันทึกไว้)

KEW6315		การแสดงค่าการกะพริบที่วัดได้ในรูปแบบรายการ
การแสดงค่าการกะ	ะพริบที่วัดได้ในรูปแบบร	ายการ
กดปุ่ม 🗭 (Flicker)	-	
	นการแสดงผล: V: จอแสดงผลรายกาฯ	ร/ Pst(1min): กราฟแนวโน้ม/ Plt: การเปลี่ยนแปลง
เชิงสถานะ		
เวลาที่เหลือ	OUALITY Image: Constraint of the second	• ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

หากมีการเชื่อมต่อโหลดแบบแปรผัน เช่น เตาอาร์ก แรงดันไฟฟ้าอาจแตกต่างกันและทำให้เกิดการเปลี่ยนแปลงระดับการ ส่องสว่าง ปรากฏการณ์ดังกล่าวเรียกว่า "การกะพริบของแรงดันไฟฟ้า" และระดับความรุนแรงจะระบุด้วย "Pst" และ "Plt"

รายการที่แสดงบน LCD			
เวลาที่เหลือ	เวลาที่นับถอยหลังจนกว่าการคำนวณ Pst จะเสร็จสิ้น โดยปกติจะใช้เวลาประมาณ 10 นาที		
V	แรงดันไฟฟ้าเฟส * สำหรับ 3P3W และ 3P3W3A จะแสดงแรงดันไฟฟ้าของสาย rms		
f	ความถี่		
Pst, 1min	ความรุนแรงของการกะพริบในระยะสั้น (1 นาที) ซึ่งมีประโยชน์ต่อการสำรวจหรือศึกษา คุณภาพกำลังไฟ		
Pst	ความรุนแรงของการกะพริบในระยะยาว (10 นาที)		
Pst, MAX	ค่า Pst สูงสุดจะถูกบันทึกตั้งแต่ต้นจนจบการวัด โดยจะรีเฟรชทุกครั้งที่ค่าที่วัดได้เกินค่าสูงสุด ก่อนหน้า		
Plt	ความรุนแรงของการกะพริบในระยะยาว (2 ชั่วโมง)		
Plt, MAX	ค่า Plt สูงสุดจะถูกบันทึกตั้งแต่ต้นจนจบการวัด โดยจะรีเฟรชทุกครั้งที่ค่าที่วัดได้เกินค่าสูงสุด ก่อนหน้า		

"Event"

กดปุ่ม F1 (Event) เพื่อแสดงเหตุการณ์ที่บันทึกไว้ โปรดดู "**การแสดงเหตุการณ์ที่บันทึกไว้**" (**หน้า 116**) ในคู่มือ

เล่มนี้

"Pst, 1min" ที่วัดได้ใน 120 นาทีล่าสุดจะแสดงบนกราฟแนวโน้ม

รายการที่แสดงบน LCD			
Pst,1min	Pst (1 min) ล่าสุด		
ค่า Max	Max "Pst, 1 min" สูงสุด ถูกบันทึกผ่านการวัด โดยจะรีเฟรชทุกครั้งที่ค่าที่วัดได้เกินค่าสูงสุดก่อน หน้า		
เวลาที่ใช้ไป	ค่าที่วัดได้ล่าสุดจะแสดงที่ด้านขวาสุด (เครื่องหมายขีด 0 นาที) และจะเลื่อนไปทางซ้ายเมื่อ เวลาผ่านไปป การเปลี่ยนแปลงใน 120 นาทีล่าสุดสามารถแสดงได้บนหน้าจอเดียว		

บทที่ 7 ฟังก์ชันอื่นๆ

"การแสดงข้อมูลค้างไว้"

สามารถปิดการอัปเดตการแสดงผลได้โดยการกดปุ่ม "DATA HOLD" ไอคอน " 🏜 "จะปรากฏขึ้นในขณะที่ปิดใช้งาน การอัปเดตการแสดงผล ไอคอนจะหายไป และการปรับปรุงการแสดงผลจะถูกเปิดใช้งานโดยการกดแป้น "DATA HOLD" อีกครั้ง การสลับหน้าจอสามารถทำได้ ยิ่งไปกว่านั้น ค่าที่วัดได้และข้อมูลเหตุการณ์จะถูกบันทึกอย่างต่อเนื่องแม้ใน ขณะที่ฟังก์ชันการพักข้อมูลถูกเปิดใช้งาน

"ล็อกปุ่ม"

การกดปุ่ม "DATA HOLD" ค้าง 2 วินาทีหรือมากกว่าจะปิดใช้งานปุ่มทั้งหมด ยกเว้นปุ่ม LCD และไอคอน "🏥" จะ ปรากฏขึ้น จำเป็นต้องกดแบบยาวอีกครั้ง (2 วินาทีขึ้นไป) เพื่อคืนค่าปุ่มปิดใช้งาน

"การปิดไฟแบ็คไลต์"

กดปุ่ม LCD เพื่อปิดไฟแบ็คไลต์ กดปุ่มใดๆ ยกเว้นปุ่มเปิด/ปิด จะเปิดไฟแบ็คไลต์อีกครั้ง

"ปิดไฟแบ็คไลต์อัตโนมัติ"

ขณะที่ KEW 6315 เชื่อมต่อกับแหล่งจ่ายไฟ AC:

ไฟแบ็คไลท์ LCD จะถูกปิดโดยอัตโนมัติใน 5 นาที หลังจากดำเนินการกับปุ่มครั้งล่าสุด กดปุ่มใด ๆ ก็ได้ ยกเว้นปุ่ม เปิด/ปิด เพื่อเปิดไฟอีกครั้ง หากต้องการปิดใช้งานฟังก์ชันปิดไฟแบ็คไลต์อัตโนมัติ ให้เลือก "Disable auto-off" บนเมนูตั้งค่า

ในขณะที่ KEW 6315 ทำงานด้วยแบตเตอรี่:

ความสว่างจะถูกลดลงครึ่งหนึ่ง ไฟแบ็คไลต์จะปิดโดยอัตโนมัติ 2 นาทีหลังจากที่เปิดอยู่ กดปุ่มใด ๆ ก็ได้ ยกเว้นปุ่ม เปิด/ปิด เพื่อเปิดไฟแบ็คไลต์อีกครั้ง ไฟแบ็คไลต์จะไม่เปิดอย่างต่อเนื่องในขณะที่เครื่องมือ ทำงานโดยใช้แบตเตอรี่

"การปิดอัตโนมัติ"

ขณะที่ KEW 6315 เชื่อมต่อกับแหล่งจ่ายไฟ AC:

เครื่องมือจะปิดโดยอัตโนมัติ 5 นาทีหลังจากการใช้งานปุ่มครั้งล่าสุด ฟังก์ชันนี้จะไม่ทำงานในขณะที่เครื่องมือกำลัง บันทึกข้อมูล กดปุ่ม เปิด/ปิด เพื่อเปิดเครื่องมืออีกครั้ง

หากต้องการปิดใช้งานฟังก์ชันปิดอัตโนมัติ ให้เลือก "Disable auto-off" บนเมนูตั้งค่า

ในขณะที่ KEW 6315 ทำงานด้วยแบตเตอรี่:

เครื่องมือจะปิดโดยอัตโนมัติ 5 นาทีหลังจากการใช้งานปุ่มครั้งล่าสุด ฟังก์ชันนี้จะไม่ทำงานในขณะที่เครื่องมือกำลัง บันทึกข้อมูล กดปุ่ม เปิด/ปิด เพื่อเปิดเครื่องมืออีกครั้ง

"ช่วงอัตโนมัติ" (ช่วงกระแสไฟฟ้า)

ช่วงกระแสไฟฟ้าของเซ็นเซอร์แต่ละตัวจะถูกสลับโดย[์]ออัตโนมัติตามกระแสไฟฟ้า rms ที่วัดได้ ฟังก์ชันนี้จะไม่ทำงานขณะ กำลังบันทึกเหตุการณ์คุณภาพกำลังไฟ ช่วงจะเลื่อนไปที่ช่วงขีดจำกัดบนหนึ่งช่วงเมื่ออินพุตเกิน 300% จุดสูงสุดของแต่ ละช่วง และเลื่อนไปที่ช่วงที่ต่ำกว่าหนึ่งช่วงเมื่ออินพุตลดลงต่ำกว่า 100% สูงสุดของแต่ละช่วง อย่างไรก็ตาม ในขณะที่ เลือก "AUTO" ช่วงขีดจำกัดบนจะถูกนำมาใช้เพื่อแสดงค่า

"การตรวจจับเซ็นเซอร์"

กดปุ่ม "Detection" บนเมนู SETUP เพื่อตรวจจับเซ็นเซอร์แคลมป์ที่เชื่อมต่ออยู่ KEW 6315 จะตรวจหาเซ็นเซอร์ที่ เชื่อมต่อโดยอัตโนมัติ และตรวจสอบการตั้งค่าของเซ็นเซอร์

"การกู้คืนจากพลังงานล้มเหลว"

เมื่อการจ[่]ายไฟให้กับเครื่องมือขาดหายไปโดยไม่ตั้งใจระหว่างการบันทึก บันทึกที่ถูกขัดจังหวะจะกลับมาทำงานอีกครั้ง หลังจากที่แหล่งจ่ายไฟกลับคืนสภาพเดิม

"หน้าจอการพิมพ์"

กดปุ่ม "PRINT SCREEN" เพื่อบันทึกหน้าจอที่แสดงเป็นไฟล์ BMP (บิตแมป) * ขนาดไฟล์สูงสุด: ประมาณ 77KB

"รักษาการตั้งค่าไว้"

การตั้งค่าที่ใช้ในการทดสอบครั้งก่อนจะไม่ถูกล้างหลังจากปิดเครื่อง KEW 6315 จะเก็บและใช้การตั้งค่าก่อนหน้า * ค่าเริ่มต้นจะแสดงเป็นครั้งแรกหลังจากการซื้อ

"Quick start guide"

ึกดปุ่ม "START/STOP" เพื่อเรียกใช้ "Quick start guide" ซึ่งมีประโยชน์ในการเริ่มบันทึก เพียงแค่ปรับการตั้งค่าง่ายๆ บางอย่างตามหน้าจอที่แสดง

"ตัวบ่งชี้สถานะ"

้ไฟ LED แสดงสถานะสีแดงจะกะพริบเมื่อไฟแบ็คไลต์ปิดอยู่ และไฟ LED แสดงสถานะสีเขียวจะติดสว่างในระหว่าง การบันทึกโดยไม่คำนึงถึงสถานะของไฟแบ็คไลต์ LED ตัวบ่งชี้สีเขียวกะพริบระหว่างโหมดสแตนด์บาย

บทที่ 8 การเชื่อมต่ออุปกรณ์

8.1 ถ่ายโอนข้อมูลไปยัง PC

ข้อมูลใน SD การ์ดหรือหน่วยความจำภายในสามารถถ่ายโอนไปยังพีซีผ่าน USB หรือตัวอ่านการ์ด SD

	ถ่ายโอนข้อมูลไปยัง PC ผ่าน:	
	USB ^{*1}	ตัวอ่านการ์ด
ข้อมูล SD การ์ด (ไฟล์)	Δ	0
ข้อมูลหน่วยความจำภายใน (ไฟล์)	0	

^{*}1: ขอแนะนำให้ถ่ายโอนข้อมูลขนาดใหญ่โดยใช้ SD การ์ด เนื่องจากการถ่ายโอนไฟล์ข้อมูลขนาดใหญ่ด้วย USB ต้องใช้ เวลามากกว่าการใช้ตัวอ่านการ์ด SD (เวลาโอน : ประมาณ 320MB/ชั่วโมง)

สำหรับการจัดการ SD การ์ด โปรดดูคู่มือการใช้งานที่แนบมาพร้อมกับการ์ด

์ ในการบันทึกข้อมูลโดยไม่มีปัญหาใด[้]ๆ โปรดตรวจสอบให้แน่ใจว่าได้ลบไฟล์อื่นนอกเหนือจากข้อมูลที่วัดได้ด้วยเครื่องมือ นี้ออกจาก SD การ์ดล่วงหน้าแล้ว

<u>KEW6315</u>

8.2 การใช้ฟังก์ชัน Bluetooth®

8.2 การใช้ฟังก์ชัน Bluetooth®

สามารถตรวจสอบข้อมูลการวัดบนอุปกรณ์ Android แบบเรียลไทม์ผ่านการสื่อสาร Bluetooth® เลือกแท็บ "Other" บนหน้าจอ SET UP เพื่อเปิดใช้งาน Bluetooth®

- * ก่อนเริ่มใช้ฟังก์ชันนี้ ให้ดาวน์โหลดแอปพลิเคชันพิเศษ "KEW Smart 6315" จากเว็บไซต์อินเทอร์เน็ต แอปพลิเคชัน "KEW Smart 6315" มีให้ดาวน์โหลดได้ฟรีบนเว็บไซต์ (ต้องใช้การเข้าถึงอินเทอร์เน็ตและอาจมีค่าใช้จ่าย เกิดขึ้น)
- * "Bluetooth®" เป็นเครื่องหมายการค้าจดทะเบียนของ Bluetooth SIG.

8.3 การควบคุมสัญญาณ

การเชื่อมต่อไปยังขั้วอินพุต/เอาต์พุต

🔪 ข้อควรระวัง

- ์ แรงดันไฟฟ้าที่ใช้กับขั้วต่อไม่ควรเกินช่วงต่อไปนี้ * สำหรับขั้วอินพุต: ภายใน ± 11 V สำหรับขั้วเอาต์พุต: ระหว่าง 0 ถึง 30 V(50 mA, 200 mW) มิฉะนั้นเครื่องมืออาจเสียหายได้
- รากของขั้วต่อ L แต่ละตัวเหมือนกัน อย่าเชื่อมต่อระดับกราวด์ที่แตกต่างกันของอินพุตหลายตัวพร้อมกัน รากของขั้วต่อ
 L สำหรับแต่ละ Ch ถูกรวมเข้าด้วยกัน ห้ามเชื่อมต่ออินพุตที่มีระดับกราวด์หลายระดับ เข้ากับขั้วต่อพร้อมกัน

ช่องเสียบอินพุต

ตรวจสอบให้แน่ใจว่าสายไฟเชื่อมต่อกับขั้วต่อที่ถูกต้อง

สามารถใช้สายไฟขนาดต่อไปนี้ได้

สายไฟที่เหมาะสม : สายเดี่ยว *Ф*1.2 (AWG16), สายบิดเกลียว 1.25mm² (AWG16),

ขนาดเกลียว *Ф*0.18mm หรือมากกว่า

สายไฟที่ใช้ได้ : สายเดี่ยว *Ф*0.4 - 1.2 (AWG26 - 16), สายบิดเกลียว 0.2 - 1.25mm² (AWG24 - 16),

ขนาดเกลียว arPhi 0.18 mm หรือมากกว่า

ความยาวมาตรฐานของสายไฟฟ้าแบบเปลือย: 11 mm

<u>การเชื่อมต่อไปยังขั้วอินพูต/เอาต์พูต</u>

2

KEW6315

- 1 เปิดฝาครอบตัวเชื่อมต่อ
 - กดส่วนที่ยื่นออกมารูปสี่เหลี่ยมผืนผ้าเหนือเทอร์มินัลด้วยไขควงปากแบน และสอดสายสัญญาณ
- 3 เอาไขควงออกและยึดสายไฟ

"ช่องเสียบอินพุต"

สำหรับการติดตามสัญญาณแรงดังดันไฟฟ้าออกของเซ็นเซอร์วัดอุณหภูมิ ขั้วต่อเหล่านี้มีประโยชน์ในการวัดสัญญาณจาก อุปกรณ์อื่นๆ และไฟฟ้าขัดข้องในเวลาเดียวกัน

จำนวน Ch: 2ch ความต้านทานอินพุต : ประมาณ 225.6 kΩ

"ขั้วเอาต์พุต"

สำหรับการแก้ไข[้]การสร้างเอาท์พุทเป็น "ต่ำ" ในขณะที่เหตุการณ์คุณภาพพลังงานยั่งยืน โดยปกติจะกำหนดคงที่ไว้ที่ "สูง" แต่จะเปลี่ยนเป็น "ต่ำ" หากระยะเวลาของเหตุการณ์น้อยกว่า 1 วินาที สิ่งนี้ใช้ได้กับเหตุการณ์ที่มีลำดับความสำคัญสูงสุด เท่านั้น หากต้องการปรับเอาต์พุตที่สร้างให้กับเหตุการณ์ที่มีลำดับความสำคัญต่ำ ให้เลือก "OFF" สำหรับเหตุการณ์ที่มี ลำดับความสำคัญสูงกว่าเหตุการณ์ที่ต้องการ รายละเอียดมีอธิบายไว้ใน " **การตั้งค่าเกณฑ์สำหรับ (เหตุการณ์) คุณภาพ กำลังไฟ**" (หน้า 65). * *(ลำดับความสำคัญ): ภาวะชั่วคราว -> ชั่วขณะ -> ตกชั่วขณะ -> เกิน -> กระแสไฟไหลเข้า*

KEW6315	5
8.4	การรับพลังงานจากสายที่วัดค่า
หากเ MOE	เป็นการยากที่จะรับไฟจากช่องเสียบ KEW6315 จะทำงานโดยใช้ไฟจากสายที่วัดได้โดยใช้อะแดปเตอร์จ่ายไฟ)EL8312 และสายวัดทดสอบแรงดันไฟฟ้า
	อันตราย เมื่อรวมเครื่องมือและสายทดสอบและใช้ร่วมกัน ไม่ว่าจะอยู่ในหมวดหมู่ที่ต่ำกว่าหมวดหมู่ใดก็ตาม ให้ยืนยัน ว่าจะต้องไม่เกินอัตราแรงดันไฟฟ้าที่วัดได้ของสายทดสอบ อย่าเชื่อมต่อสายทดสอบแรงดันไฟฟ้าเว้นแต่จำเป็นสำหรับการวัดพารามิเตอร์ที่ต้องการ เชื่อมต่อสายทดสอบแรงดันไฟฟ้าเข้ากับเครื่องมือก่อน จากนั้นจึงเชื่อมต่อเข้ากับสายที่วัด ห้ามพยายามถอดสายทดสอบแรงดันไฟฟ้าออกจากตัวเชื่อมต่อของอุปกรณ์ในระหว่างการวัด ในขณะที่ อุปกรณ์มีกระแสไฟฟ้า เชื่อมต่อกับด้านปลาย ทางของอุปกรณ์ตัดวงจรเนื่องจากความจุกระแสไฟฟ้าที่ด้านต้น ทางมีขนาดใหญ่
▲ • •	คำเตือน ปิดเครื่องมือก่อนทำการเชื่อมต่ออะแดปเตอร์และสายทดสอบ ต่อสายทดสอบแรงดันไฟฟ้าเข้ากับเครื่องมือก่อน จะต้องเชื่อมต่อสายไฟอย่างแน่นหนา หยุดใช้สายทดสอบ ถ้าแจ็คเก็ตด้านนอกเสียหาย และมองเห็นโลหะภายในหรือแจ็คเก็ตสี
เชื่อม • เห้ • พี 1 2 3 4 5 6 7 * สา: กระ	 ต่อ อะแดปเตอร์ตามขึ้นตอนต่อไปนี้ รัง รัง รัง รัง รัง รัง รัง ยันยันว่าสวิตซ์ไฟบน MODEL8312 อยู่ที่ "OFF" เชื่อมต่อปลั๊ก MODEL8312 กับขั้ว VN และ V1 บน KEW 6315 เชื่อมต่อปลั๊กไฟ MODEL8312 เข้ากับตัวเชื่อมต่อกำลังไฟบน KEW 6315 เชื่อมต่อปลั๊กไฟ MODEL8312 เข้ากับตัวเชื่อมต่อกำลังไฟบน KEW 6315 เชื่อมต่อปากคีบของสายทดสอบแรงดันไฟฟ้าเข้ากับวงจรภายใต้การทดสอบ เปิด MODEL8312 เริ่ม KEW 6315 มารถถอด อะแดปเตอร์ออกจาก KEW 6315 โดยใช้วิธีการย้อนลำดับ ะบวนการ เดูรายละเอียดเพิ่มเติมในคู่มือการใช้งานสำหรับ MODEL8312
	MODEL8312 CAT การวัด III 150 V CAT II 240 V ระดับฟิวส์: 500 mA AC /600 V, ทำงานเร็ว, Φ6.3 x 32 mm 7

<u>บทที่ 9 ซอฟต์แวร์ PC สำหรับการตั้งค่าและการวิเคราะห์ข้อมูล</u>

<u>บทที่ 9 ซอฟต์แวร์ PC สำหรับการตั้งค่าและการวิเคราะห์</u> ข้อมูล

ซอฟต์แวร์พิเศษ "KEW Windows for KEW6315" สำหรับการวิเคราะห์ข้อมูลและสำหรับการตั้งค่า KEW 6315 พร้อม ให้บริการ * การสร้างกราฟและรายการโดยอัตโนมัติจากข้อมูลที่บันทึกไว้ การจัดการแบบเป็นหนึ่งเดียวกันสำหรับการ ตั้งค่าและข้อมูลที่บันทึกไว้ที่ได้รับมาจากหลายอุปกรณ์ สามารถแสดงข้อมูลในค่าที่เทียบเท่ากับพลังงานของน้ำมันดิบ และ CO2 ในรายงาน

d het wwwC.K.Mathemathanweiterheiter and wacher als San Date (1975)	🖌 🖬 Time anne vever - C.MaerstaniseCasinernation/Web/WEDWED1100000000000000000000000000000000	🙀 🛃 hamaala aayo - Cidayaaanaa Caluura dagaalaa ahayo dagaala bahaana caluura ahayo ahayo dagaala dagaala
al fant viewer and all full state and all full state and all full state	af Time series week	d innots www
	C C C C C C F C Factore factore for the factore and the C C C C C C C C C C C C C C C C C C C	
AL.		((())
1913/12/19 12:00:20 2:00 2:0	BID/1/W ED4CED STATES STATES STATES STATES	1010109 114130 8 1000 1000 at 10100 10100 10100
N/Sup(2) (8 () (8 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	100 mm	The state of the s
1984 V 1994 V 19	The second secon	V #124.20 5.00 Y 8.80 V
a the second sec	a contraction of the contraction	10 Terrent D 20 Te
8.00	2 DMUT 100 m 433 M	V [47] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2
Terrent(b) Ind-1/1-1/1/ Wark.	TORES WITH STATES	
2 PT.P[0] P.20 A 430 A 430 A		2 47541,0 5.00 A 704.4
A 1991		T solution to an a solution to
2 45,800 A 930A		Groutia CB X Not
100 A	Tong 19.9 as and little international the state of the st	T PART A TO A
Type of much interaction in the second secon	10 X	ACTIVITY A REAL
NUM NUM	Clinicom 2499 7 249 1 249 1 249 1	C POST, P LOS A TONA
	2 1045, Mail 2469 I 101 101 101 101 101 101 101 101 101 1	M.Pe(P) & B C K 15Y
Part Marcal	1 Car 1 Car 2 Car 3 Car	Carden y toy
Fast driv (20082)	() Former (apple for the second	TYTH TLANE MOTO RIUSA RICHA RICHA RICHA
feed fist ME SECTION (CALL)	The file of all the Leon the anglest works works and any and	100 100
2012/2017 (2016/02/2017) 2017 2017 2017 2017 2017 2017 2017 2017	These life series in the series s	The blue Latt THE LANDING ACCULUDE ACCULUDE ACCULUDE ACCULUDE
State State State State State	PLANS 3.48 (2010) 2.665 000000 0 0.57 0.57 0.57 0.57 0.57 0.57	Testa 1.0 22.01102 0.000 00000.0 00.1 1.000 0.0
FURY KINA	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tree of person \$154515452
129A	10 MAG 1,465,461, 20 MATES 0.451 MARSHAR 16.51 16.51 16.51 17.11	R Rever 1000 A/1000 A
etav b b b b b b b b b	R mage 31.80 U.S	C note), 487, 47, 4. (2010) 10 401 400000.01 (2010) 10 001 (2010) 20
	Backel V 100V 4 00 01100 C.000 MINISTER 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	27. 554 0.11 0.11 0.11 1 0.11 1 0.11 1 0.11 1 0.11
	14440 1494 (0 b)130 (0 d)13 (0 d)1 (0 d)1 (0 d) (0 d)1 (0	Pressay http://www.inter.com/www
	Ander at 1.0.18 (0.0110) 2.4001 8880314 (0.01 10.01 10.01 10.01	Ring 3994 Biologic College Biologic Bio
(W 91 mil) 2 million years and a second seco	100mm1 11 m. 00.01100 C.0010 0000000 00.00	Parcine of 5, 47, 78
The Print Pr	vard dance 10.57 (0.510) (0.610 0000000.0 (0.51) (0.51) (0.51)	WORLD 2 10 Miles 20 Million 2 Millio
Det a test	The share - 10 F 2 = 20 (0.10) - 2 (0.4 (0.000) 2 = 10.2 (0.2 (0.2 (0.2 (0.2 (0.2 (0.2 (0.2 (PE for 29.571/07.5. (20.00 000000.0 00.00 0.000
	HC 2441 193/148 (P. 01109 C. 059 A000021 0 01 0 01 0 01 0 0	D m. 10 40 [20 5/110 [2 40/0 4000 02 10 [21.30 [4.000 [75,55 [4.000 [2,000 [4.000 [40]
	No for Highland	Berlet MD #99060 30 001120 30 00120 40 0000000 40 00130 10300 10330 4.000 103
4201 Note 9844 4224	Present did	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ten Yan	1 The Care	
100/100 000000 1 / / / / / / / / / / / /		

์โปรดอ่านคู่มือการติดตั้งสำหรับ "KEW Windows for KEW6315" และติดตั้งแอปพลิเคชันและไดรเวอร์ USB ใน PC ของคุณ

อินเทอร์เฟซ

เครื่องมือนี้มีอินเทอร์เฟซแบบ USB และ Bluetooth® วิธีการสื่อสาร: USB เวอร์ชัน 2.0 Bluetooth® : Bluetooth® เวอร์ชัน 5.0 โปรไฟล์ความสอดคล้อง: GATT

สามารถทำสิ่งต่อไปนี้ได้โดยการสื่อสารผ่าน USB/ Bluetooth®

- * การดาวน์โหลดไฟล์ในหน่วยความจำภายในของเครื่องมือไปยัง PC
- * การตั้งค่าเครื่องมือผ่าน PC
- * การแสดงผลลัพธ์ที่วัดได้บน PC เป็นกราฟแบบเรียลไทม์ และบันทึกข้อมูลที่วัดได้ในเวลาเดียวกัน
- ข้อกำหนดของระบบ
 - * OS (ระบบปฏิบัติการ) โปรดดูฉลากเวอร์ชันในแผ่น CD เกี่ยวกับ Windows OS
 - * จอแสดงผล 1024 x 768 จุด, 65536 สีหรือมากกว่า
 - * HDD (เนื้อที่ฮาร์ดดิสก์ที่จำเป็น) 1Gbyte หรือมากกว่า (รวมถึง Framework) .NET Framework (4.6.1 หรือใหม่กว่า)
- เครื่องหมายการค้า
 - * Windows® เป็นเครื่องหมายการค้าจดทะเบียนของ Microsoft ในสหรัฐอเมริกา
 - * Bluetooth® เป็นเครื่องหมายการค้าจดทะเบียนของ Bluetooth SIG.

ซอฟต์แวร์ล่าสุดพร้อมให้ดาวน์โหลดจากเว็บไซต์ของเรา

www.kew-ltd.co.jp

บทที่ 10 ข้อมูลจำเพาะ

10.1 ข้อกำหนดด้านความปลอดภัย

ตำแหน่งการใช้	: การใช้งานภายในอาคาร ระดับความสูงถึง 2000m
ช่วงอุณหภูมิและความชื้น	: 23ºC±5ºC ความชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มีการควบแน่น)
(ความแม่นยำที่รับประกัน)	
ช่วงอุณหภูมิและความชื่น	: 0ºC ถึง 45ºC ความชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มีการควบแน่น)
ในการทำงาน	
ช่วงอุณหภูมิและ	: -20ºC ถึง 60ºC, ความชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มีการควบแน่น)
ความชื้นในการจัดเก็บ	
ความทนต่อแรงดันไฟฟ้า	
5160 V AC / เป็นเวลา 5 วินา	เที ระหว่าง (ขั้วอินพุตแรงดันไฟฟ้า AC) และ (โครง)
3310 V AC / เป็นเวลา 5 วินา	เที ระหว่าง (ขั้วต่ออิ่นพุตแรงดันไฟฟ้า AC) และ (ขั้วต่ออินพุตกระแสไฟฟ้า
	ตัวเชื่อมต่อกำลังไฟ ตัวเชื่อมต่อ USB)
2210 V AC / เป็นเวลา 5 วินา	ที ระหว่าง (ตัวเชื่อมต่อกำลังไฟ) และ
	(ขั้วต่ออินพุตกระแสไฟฟ้า ตัวเชื่อมต่อ USB, โครง)
ความต้านทานของฉนวน	: 50 MΩ หรือมากกว่า/ 1000 V ระหว่าง
	(ขั้วอินพุตแรงดันไฟฟ้า/กระแสไฟฟ้า ตัวเชื่อมต่อกำลังไฟ) และ (โครง)
มาตรฐานที่เกี่ยวข้อง	: IEC 61010-1 CAT การวัด IV 300 V CAT III 600 V CAT II 1000 V
	ระดับมลพิษ 2, IEC 61010-031, IEC61326 Class A
กันฝุ่น/น้ำ	: IEC 60529 IP40
มาตรฐานสิ่งแวดล้อม	: EN 50581

10.2 ข้อมูลจำเพาะทั่วไป

สายที่วัดและ ch อินพุต	: ch กระแสไฟฟ้า (A2-A4) ที่ไม่เกี่ยวข้องกับระบบการเดินสายไฟที่เลือกสามารถ
	ใช้เพื่อวัตถประสงค์ในการวัดใดๆ ได้

е. <u>Ч</u> .	ch อินพุต		
ระบบการเดนสายเพ	แรงดันไฟฟ้า	กระแสไฟฟ้า	
เฟสเดียว 2 สาย 1 ระบบ (1P2W-1)	VN-V1	A1	
เฟสเดียว 2 สาย 2 ระบบ (1P2W-2)	VN-V1	A1,A2	
เฟสเดียว 2 สาย 3 ระบบ (1P2W-3)	VN-V1	A1,A2,A3	
เฟสเดียว 2 สาย 4 ระบบ (1P2W-4)	VN-V1	A1,A2,A3,A4	
เฟสเดียว 3 สาย 1 ระบบ (1P3W-1)	VN-V1,V2	A1,A2	
เฟสเดียว 3 สาย 2 ระบบ (1P3W-2)	VN-V1,V2	A1,A2,A3,A4	
สามเฟส 3 สาย 1 ระบบ (3P3W-1)	VN-V1,V2	A1,A2	
สามเฟส 3 สาย 2 ระบบ (3P3W-2)	VN-V1,V2	A1,A2,A3,A4	
สามเฟส 3 สาย (3P3W3A)	V1-V2,V2-V3,V3-V1	A1,A2,A3	
สามเฟส 4 สาย (3P4W)	VN-V1,V2,V3	A1,A2,A3	

LCD

อัปเดตการแสดงผล

: 3.5 ນິ້ວ, TFT, QVGA(320×RGB×240)

: ทุก 1 วินาที*

* อาจมีการหน่วงเวลาในการปรับปรุงการแสดงผล (สูงสุด 2 วินาที) เนื่องจากการประมวลผล ทางคณิตศาสตร์ อย่างไรก็ตาม ไม่มีการหน่วงเวลาระหว่างข้อมูลที่บันทึกไว้กับการประทับเวลาใดๆ

0.2 ข้อมูลจำเพาะทั่วไป						KEW6315
ไฟแบ็็คไลต์ (กดปุ่ม LCD เพื่	อปิดใช้งาน ให้กด	ลปุ่มใดๆก็ได้ที่ไม่ใช่ "Po	wer" เพื่อเปิด)			
การวัด PQ	: IEC 61000-4-	30 Ed.2 Class S				
ขนาด	: 175(L)×120(W)×68(D)mm				
น้ำหนัก	: ประมาณ 900	g (รวมแบตเตอรี่)				
อุปกรณ์เสริม	: สายทดสอบ V	MODEL7141B (แดง, เขีย	ว, น้ำเงิน, ดำ) พรัช	อมปากด์	จีบ	1 ชุด
	สายไฟ MODE	L7170				1 ชิ้น
	สายเคเบิล US	B MODEL7219				1 ชิ้น
	คู่มือฉบับย่อ					1 ชิ้น
	CD-ROM ·······					1 ชิ้น
	ซอฟต์แวร์	PC สำหรับการตั้งค่าแล	ะการวิเคราะห์ง่	ข้อมูล		
	(KEW Win	dows for KEW6315)		•		
	คู่มือการใช้	งาน (ไฟล์ PDF)				
	แบตเตอรี่อัลค	าไลน์ขนาด AA (LR6)…				6 ก้อน
	SD การ์ด M-8326-02				1 ชิ้น	
	กระเป๋าหิ้ว MC	DEL9125				1 ชิ้น
	แผงขั้วต่ออินพ	ធា				1 ชิ้น
	เครื่องหมายสา	่ายเคเบิล	8 สี x 4 ชิ้น	แเต่ละสี	(สีแดง, สีน้ำเงิน, สีเ	.หลือง,
			สีเขียว, สีน้ำ	าตาล, สี	เทา, สีดำ, สีขาว)	
ชิ้นส่วนอุปกรณ์เสริม	: เซ็นเซอร์แคลม	ป้			,	
	MODEL8128	(เซ็นเซอร์แคลมป์	50A	ø24n	nm)	
	KEW 8135 (lª MODEL 8127	ชนเซอรแคลมบ (เซ็นเซอร์แคลมป์	5UA 100 A	Ø/5 n ø2/n	nm) nm)	
	MODEL8126	(เซ็นเซอร์แคลมป์	200A	ø240	nm)	
	MODEL8125	(เซ็นเซอร์แคลมป์	500A	ø40n	nm)	
	MODEL8124	(เซ็นเซอร์แคลมป์	1000A	ø68n	nm)	
	KEW 8129 (1	ชนเซอรยดหยุ่น ^ส ับเซอร์ยือหยุ่น	3000A	Ø150n	nm) *ພລຫກณฑทยุเ 	ตการผลตแลว
	KEW 8133 (งนเขอรยดหยุ่น เซ็นเซอร์ยืดหย่น	3000A	ø170m	nm)	
	MODEL8146	(เซ็นเซอร์การรั่วไหล	10A	ø24n	nm)	
	MODEL8147	(เซ็นเซอร์การรั่วไหล	10A	ø40n	nm)	
	MODEL 8148	(เซ็นเซอร์การรัวไหล (เซ็นเซอร์การรัวไหล	10A 1A	ø68n	nm) ງ	້ວວດຕາເວີການດ້ວ
	MODEL8141 MODEL 8142	(เซนเซอริการรัวไหล (เซ็บเซอร์การรัวไหล	1A 1A	ø240 ø40n	im) ผลเจเนตทยุเ im) *ผลิตภัณฑ์ที่ยเ	ทการผลิตแล้ว จิการผลิตแล้ว
	MODEL8143	(เซ็นเซอร์การรั่วไหล	1A	ø68n	าm) *ผลิตภัณฑ์ที่ยุผ	ติการผลิตแล้ว
	คู่มือการใช้งา	นสำหรับเซ็นเซอร์แคลม	ป์			
	กระเป๋าหิวพรั	อมแม่เหล็ก MODEL913 องไป MODEL 0012 (0	32 AT 111 15 OV OA	T II 040		
i 0	อะแตบเตอรจ	ายเพ MODEL8312 (C/	ai III 150V, Ca	.1 11 240	JV)	
ความแมนยา	: ภายเน ± 5 วน	าท/ วน				
แหล่งจ่ายไฟ	: แหล่งจ่ายไฟ A	C				
ช่วงแรงดันไฟฟ้า		100 V AC (90 V AC)	– 240 V AC (2	264 V A	AC)	
ความถึ่		50 Hz (47 Hz) – 60	Hz (63 Hz)			
การใช้พลังงาน		7 VA สูงสุด				
	: แหล่งจ่ายไฟ D	С				
		แบตเตอรี่เ	ซลล์แห้ง		แบตเตอรี่แร	บบชาร์จได้ใหม่
แรงดันไฟฟ้า		3.0 V DC			2.4 V DC	
		(1.5 V×2 ในแบบอนุกระ	ม × 3 ในแบบขน	าน)	(1.2 V×2 ในแบบอนุเ	ารม × 3 ในแบบขนาน)
แบตเตอรี่		ขนาด AA อัลคาไลน์ (LR6)		ขนาด AA Ni-MH (1900 mA/h)
การใช้กระแสไฟฟ้า		1.0 A typ.(@3.0 V)			1.1 A typ.(@2.4 V)	
อายุการใช้งานแบตเตอรี	*ค่าอ้างอิงที่	3 ชั่วโมง: ปิดไฟแบ็คไ	ลต์		4.5 ชั่วโมง: ปิดไฟแ	บ็คไลต์
23°C					* ด้วยแบตเตอรี่ที่ช	าร์จเต็ม
		l				

<u>KEW6315</u>

OS แบบเรียลไทม์:

ผลิตภัณฑ์นี้ใช้รหัสต้นทางของ T-Kernel ภายใต้ T-License ที่ได้รับโดย T-Engine Forum (<u>www.t-engine.org</u>) บางส่วน ของซอฟต์แวร์นี้คือลิขสิทธิ์ © 2010 The FreeType Project (www.freetype.org) สงวนลิขสิทธิ์

ฟังก์ชันการสื่อสารภายนอก	: USB * ความยาวสายเคเบิล USB: สูงสุด 2 m
ตัวเชื่อมต่อ	mini-B
วิธีการสื่อสาร	USB เวอร์ชัน 2.0
หมายเลขการระบุ USB	ID ผู้จัดจำหน่าย: 12EC(Hex)
	ID ผ ^{ู้} ลิตภัณฑ์: 6315(Hex)
	หมายเลขซีเรียล: หมายเลขประจำตัว 0+7 หลัก
ความเร็วการสื่อสาร	12Mbps (ความเร็วเต็มอัตรา)
	: Bluetooth®
วิธีการสื่อสาร	Bluetooth®Ver5.0
โปรไฟล์	GATT
์ ความถี่	2402 - 2480MHz
วิธีการแปลงสัญญาณ	GFSK(1Mbps), π/4-DQPSK(2Mbps), 8DPSK(3Mbps)
ระบบส่งสัญญาณ	ระบบการข้ามความถื่

ขั้วต่อเอาต์พุตดิจิทัล:

ปกติแล้ว จะตั้งเป็น "สูง" โดยจะเปลี่ยนเป็น "ต่ำ"

ในขณะที่ค่าที่วัดได้นั้น[์]เกินค่าเกณฑ์ที่ตั้งค่าไว้สำหรับเหตุการณ์คุณภาพกำลังไฟแต่ละเหตุการณ์ โดยปกติจะกำหนด คงที่ไว้ที่ "สูง" แต่จะเปลี่ยนเป็น "ต่ำ" หากระยะเวลาของเหตุการณ์น้อยกว่า 1 วินาที สิ่งนี้ใช้ได้กับเหตุการณ์ที่มี ลำดับความสำคัญสูงสุดเท่านั้น หากต้องการปรับเอาต์พุตที่สร้างให้กับเหตุการณ์ที่มีลำดับความสำคัญต่ำ ให้เลือก "OFF" สำหรับเหตุการณ์ที่มีลำดับความสำคัญสูงกว่าเหตุการณ์ที่ต้องการ

[61 101 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1

ตัวเชื่อมต่อ	เทอร์มินัลบล็อกที่มีขั้วสัญญาณ 6 ขั้ว (สีดำ สำแดง สีเทา ML800-S1H-6P)
รูปแบบเอาต์พุต	เปิดเอาต์พุตตัวเก็บรวบรวม, การตอบสนองต่ำ
แรงดันไฟฟ้าอินพุต	0 – 30 V, 50 mA max, 200 mW
แรงดันไฟฟ้าเอาต์พุต	สูง: 4.0 V-5.0 V, ต่ำ:0.0 - 1.0 V

อมูลจาเพาะทวเบ าแหน่งที่เก็บข้อมล	หน่วยความจำแฟลชภายใน
ความจุของพื้นที่จัดเก็บ	4MB (ความจุการเก็บข้อมูล: 3,437,500byte)
้งนาดข้อมูลสูงสุด	14,623byte/ข้อมูล (สูงสุด: 234 ข้อมูล) *3P3W-2/1P3W-2 (กำลังไฟ + ฮาร์โมนิก)
จำนวนสูงสุดของไฟล์ที่บันทึก	3 * จำนวนครั้งที่คุณสามารถเริ่มต้นการวัดได้
การแสดงไอคอน	เมื่อมีหน่วยความจำภายในพร้อมใช้งาน ไอคอน " 🧱 " จะแสดงอยู่บน LCD ในระหว่าง
การบ่งชี้เต็ม	การบนทก ไอคอน " 🌉 (จะกะพริบเมื่อขนาดข้อมูลที่บันทึกไว้หรือจำนวนของไฟล์ที่บันทึกไว้เกิน
	ความจุ ไม่สามารถบันทึกข้อมูลในขณะที่เครื่องหมายนี้กำลังแสดงอยู่ เครื่องมือจะวัดค่า
	รวมยอด/ความต้องการอย่างต่อเนื่อง แต่ไม่บันทึกข้อมูล
: SD	การ์ด
ความจุของพื้นที่จัดเก็บ	2GB (ความจุการเก็บข้อมูล: 1.86Gbyte)
ขนาดข้อมูลสูงสุด (2GB)	14,623byte/ข้อมูล (สูงสุด:1,271,964 ข้อมูล) *3P3W-2/1P3W-2 (กำลังไฟ + ฮาร์โมนิก
จำนวนสูงสุดของไฟล์ที่ บันทึก (2GB)	65536 * จำนวนครั้งที่คุณสามารถเริ่มต้นการวัดได้
การแสดงไอคอน	เมื่อ SD การ์ดพร้อมใช้งาน ไอคอน " 🔲 " จะแสดงบน LCD
ฟอร์แมต (2GB)	FAT16
การบ่งชี้เต็ม	ไอคอน " 🔣 " จะกะพริบเมื่อขนาดข้อมูลที่บันทึกไว้หรือจำนวนของไฟล์ที่
	บันทึกไว้เกินความจุ ไม่สามารถบันทึกข้อมูลในขณะที่เครื่องหมายนี้กำลังแสดงอยู่
	เครื่องมือจะวัดค่ารวมยอด/ความต้องการอย่างต่อเนื่อง แต่ไม่บันทึกข้อมล

10.3 ข้อกำหนดจำเพาะของการวัด

รายการที่วัดและจำนวนจุดวิเคราะห์

้ คำนวณด้วยข้อมูล 8192 จุด ในขณะที่ถือว่าขนาด 200 ms (50 Hz:10-รอบ, 60 Hz:12-รอบ) เป็นหนึ่งพื้นที่การวัด

ความถี่ r.m.s. แรงดันไฟฟ้า/กระแสไฟฟ้า, กำลังไฟฟ้าที่ใช้จริง, กำลังไฟฟ้าปรากฏ, กำลังไฟฟ้าที่สูญเสีย, PF, การคำนวณ ความจุไฟฟ้า

้ คำนวณด้วยข้อมูล 2048 จุด ในขณะที่ถือว่าขนาด 200 ms (50 Hz:10-รอบ, 60 Hz:12-รอบ) เป็นหนึ่งพื้นที่การวัด

อัตราส่วนความไม่สมดุลของแรงดันไฟฟ้า/กระแสไฟฟ้า แรงดันไฟฟ้า/กระแสไฟฟ้า r.m.s. (อัตราของเนื้อหา), กำลังไฟฟ้าที่สูญเสียฮาร์โมนิก, ปัจจัยความผิดเพี้ยนแรงดันไฟฟ้า/กระแสไฟฟ้าฮาร์โมนิกรวม (THDV-F/R)/ (THDA-F/R), มุมเฟสของแรงดันไฟฟ้า/กระแสไฟฟ้าฮาร์โมนิก, ความแตกต่างเฟสของแรงดันไฟฟ้า/ กระแสไฟฟ้าฮาร์โมนิก

คำนวณด้วยข้อมูล 819 จุด (50 Hz) ข้อมูล 682 จุด (60 Hz) ในขณะที่รูปคลื่นหนึ่งรูปซ้อนทับทุกๆ ครึ่งคลื่นเป็นพื้นที่การวัดเดียว

แรงดันไฟฟ้าตกชั่วขณะ, การเพิ่มของแรงดันไฟฟ้า, ค่าชั่วขณะ, กระแสไฟไหลเข้า

อธิบายโดยใช้ค่า inst mujวัดได้ที่ 40.96 ksps

รูปคลื่นแรงดันไฟฟ้า/ กระแสไฟฟ้า, แรงดันไฟฟ้าอินพุตภายนอก

รายการที่วัดได้ด้วยการวัดแบบชั่วขณะ

ความถี่ f (Hz)

หลักที่แสดง	4 หลัก
ความแม่นยำ	±2dgt (40.00 Hz - 70.00 Hz, V1 ช่วง 10% - 110%, คลื่นไซน์)
ช่วงการแสดงผล	10.00 - 99.99 Hz
แหล่งอินพุต	V1 (คงที่)

้ความถี่เฉลี่ย 10 วินาที f10 (Hz)

หลักทีแสดง	4 หลัก * เช่น ค่าความถีเฉลียที่ 10 วินาที่ ของช่วง
ระบบการวัด	สอดคล้องตาม IEC61000-4-30
ความแม่นยำ	±2dgt (40.00 Hz - 70.00 Hz, V1 ช่วง 10% - 110%, คลื่นไซน์)
ช่วงการแสดงผล	10.00 - 99.99 Hz
แหล่งอินพุต	V ₁ (คงที่)

R.M.S. แรงดันไฟฟ้า V (Vrms)

ช่วง	600.0/ 1000 V
หลักที่แสดง	4 หลัก
ช่วงอินพุต ประสิทธิผล	1% - 120% ของช่วง (rms) และ 200% ของช่วง (สูงสุด)
ช่วงการแสดงผล	0.15% - 130% ของช่วง ("0" จะแสดงที่ค่าน้อยกว่า 0.15%)
ตัวประกอบยอดคลื่น	3 หรือน้อยกว่า
ระบบการวัด	สอดคล้องตาม IEC61000-4-30
ความแม่นยำ	สมมติว่าวัด 40-70 Hz คลืนไซน์ที่ช่วง 600V: 10% - 150% เทียบกับ 100V หรือมากกว่าของค่า V นอมินอล: :V นอมินอล ±0.5% อยู่นอกช่วงด้านบนและที่ช่วง 1000V
อิมพีแดนซ์อินพุต	ประมาณ 1.67 ΜΩ
สมการ	$V_{c} = \sqrt{\left(rac{1}{n} {\left(\sum_{i=0}^{n-1} {\left(V_{ci} ight)}^{2} ight)} ight)}$ i : จุดสุ่มตัวอย่าง* n: จำนวนค่าที่สุ่มที่ 10 หรือ 12 รอบ c : ช่องทางการวัด
	* 50 Hz: 8192 จุดใน 10 รูปคลื่น, 60 Hz: 8192 จุดใน 12 รูปคลื่น
1P2W-1 to 4	V ₁
1P3W-1 to 2	V ₁ , V ₂
3P3W-1 to 2	แรงดันไฟฟ้าสาย: V ₁₂ ุV ₂₃ ุV ₃₁ = √(V ₂₃ ^2 + V ₁₂ ^2+2×V ₂₃ ×V ₁₂ ×cosθV)
	[∞] θV=มุมเชิงสัมพัทธ์ของ V12, V23
ЗРЗѠЗА	แรงดันไฟฟ้าของสาย:V _{12,} V _{23,} V ₃₁
3P4W	แรงดันไฟฟ้าเฟส: V _{1,} V _{2,} V ₃
	แรงดันไฟฟ้าสาย: V ₁₂ = √(V₁^2+ V₂^2-2×V₁×V₂×cosθV₁)
	$V_{23} = \sqrt{(V_2^2 + V_3^2 - 2 \times V_2 \times V_3 \times \cos \theta V_2)}$
	$V_{31} = \sqrt{(V_3^2 + V_1^2 - 2 \times V_3 \times V_1 \times \cos \theta V_3)}$
	*θV1= มุมเชิงสัมพัทธ์ของ V1,V2, θV2= มุมเชิงสัมพัทธ์ของ V2,V3,
	$ heta V_1$ = มุมเชิงสัมพัทธ์ของ V_3,V_1

<u>ทวดเดดวยการวดชว</u> ร –	าณะ		
M.S. กระแสไเ	ฟฟ้า A (Arms)		
ช่วง	MODEL8128	(50A)	:5000m/50.00A/AUTO
	MODEL8127	(100A)	:10.00/100.0A/AUTO
	MODEL8126	(200A)	:20.00/200.0A/AUTO
	MODEL8125	(500A)	:50.00/500.0A/AUTO
	MODEL8124/KEW 8130	(1000A)	:100.0/1000A/AUTO
	MODEL8141/8142/8143	(1A)	:500.0mA
	MODEL8146/8147/8148	(10A)	:1000m/10.00A/AUTO
	KEW 8129	(3000A)	:300.0/1000/3000A
	KEW 8133	(3000A)	:300.0/3000A/AUTO
หลักที่แสดง	4 หลัก		
ช่วงอินพุต	1% - 110% ของแต่ละช่วง (rms) และ 200% ของช่วง (สูงสุด)		
การทำงาน			
พื้นที่แสดงผล	0.15% - 130% ของแต่ละช่	วง ("O" จะแสดงเ	¹ ีค่าน้อยกว่า 0.15%)
ตัวประกอบยอดคลื่น	3 หรือน้อยกว่า		
ระบบการวัด	สอดคล้องตาม IEC61000-	4-30	
ดวามแม่นยำ	สมมติว่ามีการวัด 40-70Hz	, คลื่นไซน์:	
	±0.2%rdg±0.2%f.s.+ ควา	เมแม่นยำของเซ็น	เซอร์แคลมป์
อิมพีแดนซ์อินพุต	ประมาณ 100 kΩ		
สมการ	$Ac = \sqrt{\left(\frac{1}{n}\left(\sum_{i=0}^{n-1}\left(\sum$	$\overline{A_{ci}}^2 $	c : ช่องทางการวัด A _{1,} A _{2,} A _{3,} A ₄ i :จุดสุ่มตัวอย่าง* n: จำนวนค่าที่สุ่มที่ 10 หรือ 12 รอบ
	* 50Hz: 8192 จุดใน 10 รูปเ	คลื่น, 60Hz: 819:	2 จุดใน 12 รูปคลื่น
	* ค่า A _{3 สำหรับ} 3P3W-1 ถึง :	2 คำนวณ ด้วยค่า	เกระแสไฟฟ้า r.m.s.
	$A_3 = \sqrt{(A_1^2 + A_2^2 + 2)^2}$	$\times A_1 \times A_2 \times cos \theta A$	มุมเชิงสัมพัทธ์ของ θA = A1, A2

KEW6315

รายการที่วัดได้ด้วยการวัดแบบชั่วขณะ

กำลังไฟฟ้าที่ใช้จริง P (W)

			ช่วง				
กระแสไฟฟ้า	8128 8127			81	26		
แรงดันไฟฟ้า	50.00A	5000mA	100.0A	10.00A	200.0A	20.00A	
1000V	50.00k	5000	100.0k	10.00k	200.0k	20.00k	
600.0V	30.00k	3000	60.00k	6000	120.0k	12.00k	
กระแสไฟฟ้า	812	25	812	4/30	8146/	8146/47/48	
แรงดันไฟฟ้า	500.0A	50.00A	1000A	100.0A	10.00A	1000mA	
1000V	500.0k	50.00k	1000k	100.0k	10.00k	1000	
600.0V	300.0k	30.00k	600.0k	60.00k	6000	600.0	
กระแสไฟฟ้า	8141/42/43		8129		81	33	
แรงดันไฟฟ้า	500.0mA	3000A	1000A	300.0A	3000 A	300.0 A	
1000V	500.0	3000k	1000k	300.0k	3000 k	300.0 k	
600.0V	300.0	1800k	600.0k	180.0k	1800 k	180.0 k	
หลักที่แสดง	4 หลัก						
ความแม่นยำ	±0.3%rdg±0.2	2%f.s.+ ความแม	ม่นยำของเซ็นเซอ	ร์แคลมป์ (PF 1, ค	ลื่นไซน์, 40-70	Hz)	
	[*] ค่าผลรวมเป็น	จำนวนรวมของข	ช่องทางที่ใช้				
อิทธิพลของ PF	±1.0%rdg (40	Hz-70 Hz, PFO	.5)				
ขั้ว	ปริมาณการใช้ (flow-in):+(ไม่มีส	สัญลักษณ์), การ	สร้างใหม่ (flow-c	out):-		
តូចទ	$P_c = \frac{1}{n} \left(\sum_{i=1}^{n} \right)^{n}$	$\sum_{i=0}^{-1} (V_{ci} \times A_{ci})$	c: ช่อง i: จุดสุ่ม	ทางการวัด งตัวอย่าง*			
		-0 /	n: จำน	วนค่าที่สุ่มตัวอย่า	৩		
	* 50 Hz: 8192	จุดใน 10 รูปคลืเ	ı, 60 Hz: 8192 [;]	จุดใน 12 รูปคลืน			
1P2W-1 to 4	P1, P2, P3, P4, F	P _{sum} =P ₁ +P ₂ +P ₃	+P4				
1P3W(3P3W)-1 to	P ₁ , P ₂ , P _{sum1} =F	P ₁ +P ₂					
2	P3, P4, P _{sum2} =	P3+P4					
	P _{sum} =P _{sum1} +P	sum2					
3P3W3A	P ₁ , P ₂ , P ₃ , P _{sur}	_m =P ₁ +P ₂ +P ₃ * แ	รงดันไฟฟ้าเฟสถูก	ใช้			
3P4W	P ₁ , P ₂ , P ₃ , P _{sur}	_m =P ₁ +P ₂ +P ₃					
แรงดันไฟฟ้าอิน	พุตภายนอ	ก DCi (V)					
ช่วง	100.0mV/ 100	0mV/ 10.00V					
หลักที่แสดง	4 หลัก						
ช่วงอินพุต ประสิทธิผล	1% - ±100% ([DC) ของแต่ละช่ว	10				
ช่วงการแสดงผล	0.3% - ±110%	ของแต่ละช่วง ('	'0" จะแสดงที่ค่า	น้อยกว่า 0.3%)			
ความแม่นยำ	±0.5%f.s (DC)						
อิมพีแดนซ์อินพุต	ประมาณ 225.6	βkΩ					
รายการที่บันทึก	แรงดันไฟฟ้าอิน	พุตภายนอก					

<u>รายการที่จะคำนวณ</u> รายการที่จะคำนวณ กำลังไฟฟ้าปรากฏ S (VA)

แขงเพพ.เกว.บ	ng S (VA)
ช่วง	เหมือนกำลังไฟฟ้าที่ใช้จริง
หลักที่แสดง	เหมือนกำลังไฟฟ้าที่ใช้จริง
ความแม่นยำ	±1dgt เทียบกับแต่ละค่าที่คำนวณได้ (สำหรับผลรวม: ±3dgt)
สัญลักษณ์	ไม่มีการบ่งชี้ขั้ว
สมการ	<i>S_c =V_c×A_{c;}</i> เมื่อ <i>P_c>S_c,</i> เกี่ยวข้องกับ <i>P_c =S_c.</i> c: ช่องทางการวัด
1P2W-1 to 4	S ₁ , S ₂ , S ₃ , S ₄ , S _{sum} =S ₁ +S ₂ +S ₃ +S ₄
1P3W-1 to 2	S1, S2, Ssum1 = S1+S2
	S ₃ , S ₄ , S _{sum2} = S ₃ +S ₄
	S _{sum} =S _{sum1} +S _{sum2}
3P3W-2	S1, S2, S _{sum1} =√3/2(S1+S2)
	$S_{3}, S_{4}, S_{sum2} = \sqrt{3}/2(S_{3}+S_{4})$
	S _{sum} =S _{sum1} +S _{sum2}
3P3W3A	S1, S2, S3, S _{sum} =S1+S2+S3 * แรงดันไฟฟ้าเฟสถูกใช้
3P4W	S ₁ , S ₂ , S ₃ , S _{sum} = S ₁ +S ₂ +S ₃

กำลังไฟฟ้าที่สูญเสีย Q (Var)

U *	
ช่วง	เหมือนกำลังไฟฟ้าที่ใช้จริง
หลักที่แสดง	เหมือนกำลังไฟฟ้าที่ใช้จริง
ความแม่นยำ	±1dgt เทียบกับแต่ละค่าที่คำนวณได้ (สำหรับผลรวม : ±3dgt)
สัญลักษณ์	— : เฟสนำหน้า (เฟสกระแสไฟฟ้าเทียบกับแรงดันไฟฟ้า)
	+ (ไม่มีสัญลักษณ์) : เฟสล้าหลัง (เฟสกระแสไฟฟ้าเทียบกับแรงดันไฟฟ้า)
	กำลังที่สูญเสียฮาร์โมนิกคำนวณต่อ ch และจะแสดงเครื่องหมายขั้วของรูปคลื่นพื้นฐาน
	แบบกลับด้าน
สมการ	$Q_c = sign\sqrt{{S_c}^2 - {P_c}^2}$ sign: สัญลักษณ์ขั้ว c: ช่องทางการวัด
1P2W-1 to 4	$Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{sum} = Q_{1} + Q_{2} + Q_{3} + Q_{4}$
1P3W(3P3W)-1 to 2	$Q_{1}, Q_{2}, Q_{sum1} = Q_{1} + Q_{2}$
	$Q_{3}, Q_{4}, Q_{sum2} = Q_{3} + Q_{4}$
	$Q_{sum} = Q_{sum1} + Q_{sum2}$
3P3W3A(3P4W)	$Q_{1}, Q_{2}, Q_{3}, Q_{sum} = Q_{1} + Q_{2} + Q_{3}$

พาวเวอร์แฟกเตอร์: PF

ช่วงการแสดงผล	-1.000 ถึง 0.000 ถึง 1.000
ความแม่นยำ	±1dgt เทียบกับแต่ละค่าที่คำนวณได้ (สำหรับผลรวม: ±3dgt)
สัญลักษณ์	– : เฟสนำหน้า
	+ (ไม่มีสัญลักษณ์) : เฟสล้าหลัง
	กำลังรีที่สูญเสียฮาร์โมนิกคำนวณต่อ ch และจะแสดงเครื่องหมายขั้วของรูปคลื่นพื้นฐาน
	แบบกลับด้าน
สมการ	$PFc = sign \left \frac{Pc}{Sc} \right $ sign: เครื่องหมายขั้ว, c: ช่องทางการวัด
1P2W-1 to 4	PF ₁ , PF ₂ , PF ₃ , PF ₄ , PF _{sum}
1P3W(3P3W)-1	PF ₁ , PF ₂ , PF _{sum1}
to 2	PF3, PF4, PFsum2
	PF _{sum}
3P3W3A(3P4W)	PF1, PF2, PF3, PFsum

กระแสไฟฟ้าเป็นกลาง An (A) * เฉพาะเมื่อการกำหนดค่าการเดินสายไฟเป็น 3P4W เท่านั้น

ช่วง	เหมือนกับกระแสไฟฟ้า r.m.s.
หลักที่แสดง	เหมือนกับกระแสไฟฟ้า r.m.s.
พื้นที่แสดงผล	เหมือนกับกระแสไฟฟ้า r.m.s.
สมการ	

$$An = \sqrt{\{A1 + A2\cos(\theta - \theta - \theta) + A3\cos(\theta - \theta - \theta)\}^{2} + \{A2\sin(\theta - \theta - \theta) + A3\sin(\theta - \theta - \theta)\}^{2}}$$

* *01,2,3* แทนถึงความแตกต่างของเฟสระหว่าง V1 และ A1,2 และ 3 ตามลำดับ

้อัตราส่วนความไม่สมดลของแรงดันไฟฟ้าอัตรา Uunb [%]

	q ~ ~ ~
หลักที่แสดง	5 หลัก
ช่วงการแสดงผล	0.00% ถึง 100.00%
การเดินสายไฟ	3P3W, 3P4W
ระบบการวัด	สอดคล้องตาม IEC61000-4-30
ความแม่นยำ	±0.3%: ที่ 50/60 Hz, คลื่นไซน์
	(ระหว่าง 0 ถึง 5 % ตาม IEC61000-4-30)
สมการ	$Vumb = \sqrt{\left(\frac{1 - \sqrt{(3 - 6\beta)}}{1 + \sqrt{(3 - 6\beta)}}\right)} \times 100 \beta = \frac{V_{12}^4 + V_{23}^4 + V_{31}^4}{\left(V_{12}^2 + V_{23}^2 + V_{31}^2\right)^2}$
	* ส่วนประกอบลำดับที่ 1 ของแรงดันไฟฟ้าฮาร์โมนิกถูกใช้
	* สำหรับระบบ 3P4W แรงดันไฟฟ้าของเฟสจะถูกแปลงเป็นแรงดันไฟฟ้าสายสำหรับ
	การคำนวณ
	$V_{12} = V_{1} - V_{2}, V_{23} = V_{2} - V_{3}, V_{31} = V_{3} - V_{1}$

หลักที่แสดง	5 หลัก
ช่วงการแสดงผล	0.00% ถึง 100.00%
การเดินสายไฟ	3P3W, 3P4W
สมการ	$Iumb = \sqrt{\left(\frac{1 - \sqrt{(3 - 6\beta)}}{1 + \sqrt{(3 - 6\beta)}}\right)} \times 100 \beta = \frac{A_{12}^4 + A_{23}^4 + A_{31}^4}{\left(A_{12}^2 + A_{23}^2 + A_{31}^2\right)^2}$
	* ส่วนประกอบลำดับที่ 1 ของกระแสไฟฟ้าฮาร์โมนิกถูกใช้
	* สำหรับระบบ 3P4W แรงดันไฟฟ้าของเฟสจะถูกแป [้] ลงเป็นแรงดันไฟฟ้าสายสำห
	การคำนวณ
	$A_{12} = A_1 - A_2, A_{23} = A_2 - A_3, A_{31} = A_3 - A_1$
ารคำนวณควา	ามจุไฟฟ้า
หลักที่แสดง	4-digit, Unit: nF, μF, mF, kvar
ช่วงการแสดงผล	0.000nF - 9999F, 0.000kvar - 9999kvar
	$C_{C} = P_{C} \times \left(\sqrt{\frac{1}{PF_{C}^{2}} - 1} - \sqrt{\frac{1}{PF_{C_{T} \operatorname{arg}et}^{2}} - 1} \right) [k \operatorname{var}]$ $= \frac{P_{C} \times 10^{9}}{2\pi f \times V_{C}^{2}} \times \left(\sqrt{\frac{1}{PF_{C}^{2}} - 1} - \sqrt{\frac{1}{PF_{C_{T} \operatorname{rarg}et}^{2}} - 1} \right) [\mu F]$
	C_ : ความจุเพพาทจาเบนสาหรบการบรบบรุง
	P_c : Плад เพของ เหลด (Плад เพท เช่งรง) [KW]
	/ : H 2 1 N N
	vം . പായവസ്ത്രന്നാം. നല നലങ്ക്കിക്
	$\Gamma C_{c_{-}}$ larget . White Design (FD INA ID)
1P2W-1 to 4	
1P3W(3P3W)-1	$C_1, C_2, C_3, C_4, C_{SUM} = C_1 + C_2 + C_3 + C_4$
to 2	
	Osum=Osumi+ Osum2

รายการที่วัดได้ด้วยการวัดแบบรวมยอด การใช้พลังงาน (ถ้า P<u>≥</u>0)

พลังงานของกำลังไฟที่ใช้งานอยู่ +WP (Wh)

หลักที่แสดง	6 หลัก, หน่วย: m, k, M, G, T (สอดคล้องกับ $+ W\!S$)
พื้นที่แสดงผล	0.00000 mWh - 9999.99 TWh (สอดคล้องกับ $+WS$)
	* "OL" จะปรากฏขึ้นเมื่อเกินพื้นที่แสดงผล
สมการ	$+WPc = \frac{1}{h} \left(\sum_{i} (+P_{ci}) \right)$
	h: ระยะเวลาการผสานรวม (3600 วินาที), c: ช่องทางการวัด, i: จำนวนจุดข้อมูล
1P2W-1 to 4	+WP ₁ , +WP ₂ , +WP ₃ , +WP ₄ , +WP _{sum}
1P3W(3P3W)-1	+WP ₁ , +WP ₂ , +WP _{sum1}
to 2	+WP3 , +WP4 , +WP _{sum2}
	+WP _{sum}
3P3W3A(3P4W)	+WP ₁ , +WP ₂ , +WP ₃ , +WP _{sum}

พลังงานของกำลังไฟปรากฏ +WS (VAh)

หลักที่แสดง	6 หลัก, หน่วย: m, k, M, G, T (สอดคล้องกับ + <i>WS</i>)
พื้นที่แสดงผล	0.0000mVAh - 9999.99TVAh (สอดคล้องกับ $+WS$)
	* "OL" จะปรากฏขึ้นเมื่อเกินพื้นที่แสดงผล
สมการ	$+WSc = \frac{1}{h} \left(\sum_{i} \left(S_{ci} \right) \right)$
	h: ระยะเวลาการผสานรวม (3600 วินาที), c: ช่องทางการวัด, i: จำนวนจุดข้อมูล
1P2W-1 to 4	+WS1 , +WS2 , +WS3 , +WS4 , +WSsum
1P3W(3P3W)-1 to 2	+WS1 , +WS2 , +WS _{sum1}
	+WS3 , +WS4 , +WS _{sum2}
	+WS _{sum}
3P3W3A(3P4W)	+WS1, +WS2, +WS3, +WSsum
รายการที่บันทึก	พลังงานของกำลังไฟปรากฏ

ลังงานของกำ	าลังไฟที่สูญเสีย +WQ (Varh)
หลักที่แสดง	6 หลัก, หน่วย: m, k, M, G, T (สอดคล้องกับ $+ WS$)
พื้นที่แสดงผล	0.00000 mvarh - 9999.99 Tvarh (สอดคล้องกับ $+WS$) * "OL" จะปรากฏขึ้นเมื่อเกินพื้นที่แสดงผล
สมการ	เฟส นำหน้า $+WQc_c = \frac{1}{h} \left(\sum_i (+Q_{ci}) \right).$
	เฟส ล้าหลัง $+WQi_c = \frac{1}{h} \left(\sum_{i} \left(-Q_{ci} \right) \right).$
	h: ระยะเวลาการผสานรวม (3600 วินาที), n: จำนวนระบบ, c: ช่องทางการวัด i: จำนวนจุดข้อมูล * โดยที่: เฟสล้าหลัง: <i>Q</i> <u>≥</u> 0, เฟสนำหน้า: <i>Q</i> < 0
1P2W-1 to 4	+WQ1, +WQ2, +WQ3, +WQ4, +WQsum
1P3W(3P3W)-1	+WQ1, +WQ2, +WQ _{sum1}
to 2	+WQ ₃ , +WQ ₄ , +WQ _{sum2}
	+WQ _{sum}
3P3W3A(3P4W)	$+WQ_{1}, +WQ_{2}, +WQ_{3}, +WQ_{sum}$

กำลังไฟการนำมาใช้ใหม่ (ถ้า: P<O) พลังงานของกำลังไฟที่ใช้งานอยู่ - WP(Wh)

หลักที่แสดง	6 หลัก, หน่วย: m, k, M, G, T (สอดคล้องกับ + <i>WS</i>)				
พื้นที่แสดงผล	0.00000 mWh - 9999.99 TWh (สอดคล้องกับ $+WS$)				
	* "OL" จะปรากฏขึ้นเมื่อเกินพื้นที่แสดงผล				
สมการ	$-WPc = \frac{1}{h} \left(\sum_{i} \left(-P_{ci} \right) \right)$				
	h: ระยะเวลาการผสานรวม (3600 วินาที), c: ช่องทางการวัด, i: จำนวนจุดข้อมูล				
1P2W-1 to 4	-WP1 , -WP2 , -WP3 , -WP4 , -WPsum				
1P3W(3P3W)-1	-WP ₁ , -WP ₂ , -WP _{sum1}				
to 2	-WP3 , -WP4 , -WP _{sum2}				
	-WP _{sum}				
3P3W3A(3P4W)	-WP1 , -WP2 , -WP3 , -WP _{sum}				

KEW6315

รายการที่วัดได้ด้วยการวัดแบบรวมยอด

พลังงานของกำลังไฟปรากฏ -WS(VAh)

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
หลักที่แสดง	6 หลัก, หน่วย: m, k, M, G, T (สอดคล้องกับ + <i>WS</i> )		
พื้นที่แสดงผล	0.0000mVAh - 9999.99TVAh (สอดคล้องกับ $+W\!S$ )		
	* "OL" จะปรากฏขึ้นเมื่อเกินพื้นที่แสดงผล		
สมการ	$-WSc = \frac{1}{h} \left( \sum_{i} \left( S_{ci} \right) \right)$		
	h: ระยะเวลาการผสานรวม (3600 วินาที), c: ช่องทางการวัด,  i: จำนวนจุดข้อมูล		
1P2W-1 to 4	-WS1, -WS2, -WS3, -WS4, -WSsum		
1P3W(3P3W)-1	-WS1 , -WS2 , -WS _{sum1}		
to 2	-WS3 , -WS4 , -WS _{sum2}		
	-WS _{sum}		
3P3W3A(3P4W)	-WS1 , -WS2 , -WS3 , -WSsum		

#### พลังงานของกำลังไฟที่สูญเสีย -WQ (Varh)

หลักพื่นสุดง	$G$ where $m \neq M \in T$ (recention $+ WS$ )				
ศักร์	6 หลา หน่วย: m, k, M, G, T (สอดคลองกบ + W S)				
พีนทีแสดงผล	0.00000mvarh - 9999.99Tvarh (สอดคล้องกับ + <i>WS</i> )				
	* "OL" จะปรากฏขึ้นเมื่อเกินพื้นที่แสดงผล				
สมการ	เฟสนำหน้า $-WQc_c=rac{1}{h}iggl(\sum_i(+Q_{ci})iggr),$				
	เฟสล้าหลัง $-WQi_c=rac{1}{h}\left(\sum_{i}\left(-Q_{ci}\right)\right)$				
	h: ระยะเวลาการผสานรวม (3600 วินาที), n: จำนวนระบบ, c: ช่องทางการวัด				
	i: จำนวนจุดข้อมูล * โดยที่: เฟสล้าหลัง: <i>Q</i> <u>≥</u> 0, เฟสนำหน้า: <i>Q</i> < 0				
1P2W-1 to 4	-WQ1 , -WQ2 , -WQ3 , -WQ4 , -WQ _{sum}				
1P3W(3P3W)-1	-WQ1 , -WQ2 , -WQ _{sum1}				
to 2	-WQ3 , -WQ4 , -WQsum2				
	-WQ _{sum}				
3P3W3A(3P4W)	-WQ1 , -WQ2 , -WQ3 , -WQ _{sum}				

#### ระยะเวลาของการรวม

พื้นที่แสดงผล	00:00:00 (0 วินาที)	-	99:59:59 (99 h 59 min 59 sec) ,
	0100:00	-	9999:59 (9999 h 59 min) ,
	010000	-	999999 (999999 h) *
			เวลาที่แสดงจะเคลื่อนผ่านตามลำดับ
## <u>รายการที่วัดได้ด้วยการวัดความต้องการ</u> รายการที่วัดได้ด้วยการวัดความต้องการ

#### ค่าเป้าหมาย (DEM_{⊺arget})

	5 /
หลักที่แสดง	4 หลัก
หน่วย	m, k, M, G, T
ช่วงการแสดงผล	0.000mW(VA) - 999.9TW(VA) *ตามค่าที่เลือก

### ้ค่าที่คาดการณ์ (DEM_{Guess})

•		
หลักที่แสดง	6 หลัก	
หน่วย	m, k, M, G, T (ขึ้นอยู่กับค่า DEM _{Target} )	
ช่วงการแสดงผล	0.00000 mW(VA) - 99999.9 TW(VA) * จุดทศนิยมขึ้นอยู่กับค่า DEM _{Target} * "OL" จะปรากฏขึ้นเมื่อเกินพื้นที่แสดงผล	
สมการ	$DEM_{Guess} = \Sigma DEM \times \frac{Demand  interval}{Elapsed  time}$	

### ้ค่าปัจจุบัน ค่าคว่ามต้องการที่วัดได้ (ΣDEM)

หลักที่แสดง	6-digit , หน่วย: m, k, M, G, T (ขึ้นอยู่กับค่า DEM _{Target)}	
หน่วย	m, k, M, G, T (ขึ้นอยู่กับค่า DEM _{Target)}	
ช่วงการแสดงผล	0.0000mW(VA) - 99999.9TW(VA)	
	* จุดทศนิยมขึ้นอยู่กับค่า DEM _{Target}	
	* "OL" จะปรากฏขึ้นเมื่อเกินพื้นที่แสดงผล	
สมการ	$\Sigma DEM=$	
	(Integration values of "+WPsum (+WSsum)")	
	$\times \frac{1  hour}{1}$	
	<i>Interval</i>	

#### ตัวคูณโหลด

หลักที่แสดง	6 หลัก
ช่วงการแสดงผล	0.00 - 9999.99% * "OL" จะปรากฏขึ้นเมื่อเกินพื้นที่แสดงผล
สมการ	$\Sigma DEM / DEM_{Terget}$

#### การประมาณ

หลักที่แสดง	6 หลัก
ช่วงการแสดงผล	0.00 - 9999.99% * "OL" จะปรากฏขึ้นเมื่อเกินพื้นที่แสดงผล
สมการ	DEM _{Guess} /DEM _{Terget}

#### รายการที่วัดได้ด้วยการวัดฮาร์โมนิก

ระบบการวัด	: การซิงโครไนซ์ PLL แบบดิจิทัล
วิธีการวัด	: วิเคราะห์ฮาร์โมนิกแล้วเพิ่มและแสดงส่วนประกอบของฮาร์โมนิกระหว่างตัวที่
	อยู่ติดกับลำดับอินทิเกรตของฮาร์มอนิกที่วิเคราะห์แล้ว
ช่วงความถี่ประสิทธิผล	: 40 – 70 Hz
การวิเคราะห์ลำดับ	:1-50
ความกว้างหน้าต่าง	: 10 รอบที่ 50 Hz, 12 รอบที่ 60 Hz
ประเภทหน้าต่าง	: สี่เหลี่ยมผืนผ้า
การวิเคราะห์ข้อมูล	: 2048 จุด
อัตราการวิเคราะห์	: หนึ่งครั้ง/ 200 ms ที่ 50 Hz/60 Hz

#### แรงดันไฟฟ้าฮาร์โมนิก r.m.s. Vk (Vrms)

ช่วง	เหมือนกับแรงดันไฟฟ้า r.m.s.		
หลักที่แสดง	เหมือนกับแรงดันไฟฟ้า r.m.s.		
ช่วงการแสดงผล	เหมือนกับแรงดันไฟฟ้า r.m.s.		
	* อัตราของเนื้อหา 0.0% - 100.0% เปอร์เซ็นต์จากคลื่นพื้นฐาน		
ระบบการวัด	สอดคล้องกับ IEC61000-4-30, IEC61000-4-7, IEC61000-2-4		
	ความกว้างของหน้าต่างการวิเคราะห์คือ 10/12 รอบสำหรับ 50/60Hz และค่าที่วัดได้จะมี		
	ส่วนประกอบระหว่างฮาร์โมนิกที่อยู่ติดกับลำดับที่วิเคราะห์		
ความแม่นยำ	สอดคล้องตาม IEC61000-2-4 Class3 โดยมีช่วงอินพุต 10% - 100% สำหรับช่วง 600V		
	3% หรือมากกว่า 100 V ของแรงดันไฟฟ้าที่กำหนด : ±10%rdg		
	น้อยกว่า 3% เทียบกับ 100 V ของแรงดันไฟฟ้าที่กำหนด   : แรงดันไฟฟ้าที่กำหนด ±0.3%		
	ช่วง 1000V : ±0.2%rdg±0.2%f.s.		
สมการ	$V_{ck} = \sqrt{\sum_{n=-1}^{1} (V_c(10k+n)r)^2 + (V_c(10k+n)i)^2}$ Rate of content $= \frac{V_{ck} \times 100}{V_{c1}}$ c: ช่องทางการวัด, k: ฮาร์โมนิกของแต่ละลำดับ Vr: จำนวนจริงหลังการแปลง FFT แรงดันไฟฟ้า Vi จำนวนจินตภาพหลังการแปลง FFT แรงดันไฟฟ้า รอบการวัดในสมการนี้คือ 10 รอบ สำหรับการวัด 12 รอบ "10k+n" จะต้องถูกแทนที่ด้วย "12k+n"		
1P2W-1 to 4	V _{1k}		
1P3W-1 to 2	V1k, V2k		
3P3W-1 to 2	แรงดันไฟฟ้าของสาย V _{12k,} V _{32k}		
3P3W3A	แรงดันไฟฟ้าของสาย V _{12k} , V _{23k} , V _{31k}		
3P4W	V _{1k} , V _{2k} , V _{3k}		

ระแสเพพาฮา	ารเมนก r.m.s. Ak [Arms]	
ช่วง	เหมือนกับกระแสไฟฟ้า r.m.s.	
หลักที่แสดง	เหมือนกับกระแสไฟฟ้า r.m.s.	
ช่วงการแสดงผล	เหมือนกับกระแสไฟฟ้า r.m.s. * อัตรวรว หนึ่วระ 0.004 - 100.004 (เปอร์ ซึ่งเต็รเว เอรื่อเพื่นเรอง)	
ຍ	ยแร่`เขยงเนยห`I 0.0% - 100.0% (เบยรเชนเตยงผลนพนฐ`Iน)	
ระบบการวด	สอดศักราช 1200000-4-7, 1200000-2-4 ความกว้างของหน้าต่างการวิเคราะห์: 10/12 รอบสำหรับ 50/60 Hz ค่าที่วัดได้จะมี	
	อินเทอร์ฮาร์โมนิกที่อยู่ติดกับฮาร์โมนิกของคำสั่งที่วิเคราะห์	
ความแม่นยำ	เป็นไปตามความแม่นย้ำที่ระบุไว้ใน IEC61000-2-4 Class3 ที่ 10% - 100% ของช่วง	
	อินพุตของช่วงการวัด	
	10% หรือมากกว่าของช่วงอินพุตสูงสุด : ±10%rdg +	
	ความแมนยาของเซนเซอรแคลมบ ม้อยถว่า 1006 ของช่วงอิมพตสงสอ : ค่าสงสอของช่วง + 1 006 +	
	นอยกว่า 10 % ของขวงอนพุษถูงถุด ความแม่นยำของเซ็นเซอร์แคลมป์	
สมการ		
	$A_{ck} = \left(\sum_{i=1}^{1} (A_c(10k+n)r)^2 + (A_c(10k+n)i)^2\right)$ Rate of $= \frac{A_{ck} \times 10^{-1}}{10^{-1}}$	
	$\sqrt{\sum_{n=-1}^{\infty}}$ content $A_{c1}$	
	c: ช่องทางการวัด: A1k, A2k, A3k, A4k, k: ฮาร์โมนิกของแต่ละลำดับ	
	r: จำนวนจริงหลังจากการแปลง FFT, i: จำนวนจินตภาพหลังการแปลง FFT รอบการ	
	สมการนี้คือ 10 รอบ สำหรับการวัด 12 รอบ "10k+n" จะต้องถกแทนที่ด้วย "12k+n"	
าลังฮาร์โมนิก		
ส่วง	เหมือนกำลังไฟฟ้าที่ให้อริง	
010	เทพธพา เมง เพพ เทรยของ	
หลาทแลดง	เหมือนก็ได้งานการใจเมืองในเป็นขึ้นการจะ * วันความีการก 0.006 100.006 เปละเพิ่มต้างขึ้นเป็นการ	
ชวงการแสดงผล	เหม่อนกันกับกาลง เพพาทเซจรง * อตราเนอหา 0.0% - 100.0% เปอรเซนตเทยบกบ ค่าสัมบรณ์ของคลื่นพื้นธาน	
ระบบการวัด	สอดคล้องตาม IEC61000-4-7	
ความแม่นยำ	±0.3%rdg±0.2%f.s.+ ความแม่นยำของเซ็นเซอร์แคลมป์ (PF 1, คลื่นไซน์: 50/60 Hz)	
	(ผลรวมแทนถึงค่ารวมที่ได้ผ่านช่องทางที่ใช้)	
สมการ	$P_{c,-V}$ and $Y_{c,-V}$ Rate of $P_{ck} \times 100$	
	$P_{c1} = P_{c1}$	
	c: ช่องทางการวัด, k: ฮาร์โมนิกของแต่ละลำดับ	
	r: จำนวนจริงหลังจากการแปลง FFT, i: จำนวนจินตภาพหลังการแปลง FFT	
	รอบการวัดในสมการนิคือ 10 รอบ สำหรับการวัด 12 รอบ "10k" จะต้องถูกแทนที่ด้วย " 	
1P2W-1 to 4	รอบการวัดในสมการนิคือ 10 รอบ สำหรับการวัด 12 รอบ "10k" จะต้องถูกแทนที่ด้วย ' 	
1P2W-1 to 4 1P3W-1 to 2	รอบการวัดในสมการนิคือ 10 รอบ สำหรับการวัด 12 รอบ "10k" จะต้องถูกแทนที่ด้วย "	
1P2W-1 to 4 1P3W-1 to 2	รอบการวัดในสมการนิคือ 10 รอบ สำหรับการวัด 12 รอบ "10k" จะต้องถูกแทนที่ด้วย '	
1P2W-1 to 4 1P3W-1 to 2	รอบการวัดในสมการนิคือ 10 รอบ สำหรับการวัด 12 รอบ "10k" จะต้องถูกแทนที่ด้วย "	
1P2W-1 to 4 1P3W-1 to 2 3P3W-1 to 2	รอบการวัดในสมการนิคือ 10 รอบ สำหรับการวัด 12 รอบ "10k" จะต้องถูกแทนที่ด้วย " <i>P_{1k}, P_{2k}, P_{3k}, P_{4k}, P_{sumk}=P_{1k}+P_{2k}+P_{3k}+P_{4k}</i> <i>P_{1k}, P_{2k}, P_{sum1k}=P_{1k}+P_{2k}</i> <i>P_{3k}, P_{4k}, P_{sum2k}=P_{3k}+P_{4k}</i> <i>P_{sumk}=P_{sum1k}+P_{sum2k}</i> <i>P_{1k}, P_{2k}, P_{sum1k}=P_{1k}+P_{2k}</i>	
1P2W-1 to 4 1P3W-1 to 2 3P3W-1 to 2	รอบการวัดในสมการนิคือ 10 รอบ สำหรับการวัด 12 รอบ "10k" จะต้องถูกแทนที่ด้วย " P _{1k} , P _{2k} , P _{3k} , P _{4k} , P _{sumk} =P _{1k} +P _{2k} +P _{3k} +P _{4k} P _{1k} , P _{2k} , P _{sum1k} =P _{1k} +P _{2k} P _{3k} , P _{4k} , P _{sum2k} =P _{3k} +P _{4k} P _{sumk} =P _{sum1k} +P _{sum2k} P _{1k} , P _{2k} , P _{sum1k} =P _{1k} +P _{2k} P _{3k} , P _{4k} , P _{sum2k} =P _{3k} +P _{4k}	
1P2W-1 to 4 1P3W-1 to 2 3P3W-1 to 2	รอบการวัดในสมการนิคือ 10 รอบ สำหรับการวัด 12 รอบ "10k" จะต้องถูกแทนที่ด้วย " <i>P</i> _{1k} , <i>P</i> _{2k} , <i>P</i> _{3k} , <i>P</i> _{4k} , <i>P</i> _{sumk} = <i>P</i> _{1k} + <i>P</i> _{2k} + <i>P</i> _{3k} + <i>P</i> _{4k} <i>P</i> _{1k} , <i>P</i> _{2k} , <i>P</i> _{sum1k} = <i>P</i> _{1k} + <i>P</i> _{2k} <i>P</i> _{3k} , <i>P</i> _{4k} , <i>P</i> _{sum2k} = <i>P</i> _{3k} + <i>P</i> _{4k} <i>P</i> _{sumk} = <i>P</i> _{sum1k} + <i>P</i> _{sum2k} <i>P</i> _{1k} , <i>P</i> _{2k} , <i>P</i> _{sum1k} = <i>P</i> _{1k} + <i>P</i> _{2k} <i>P</i> _{3k} , <i>P</i> _{4k} , <i>P</i> _{sum2k} = <i>P</i> _{3k} + <i>P</i> _{4k} <i>P</i> _{3k} , <i>P</i> _{4k} , <i>P</i> _{sum2k} = <i>P</i> _{3k} + <i>P</i> _{4k} <i>P</i> _{sumk} = <i>P</i> _{sum1k} + <i>P</i> _{sum2k}	
1P2W-1 to 4 1P3W-1 to 2 3P3W-1 to 2 3P3W3A	รอบการวัดในสมการนิคือ 10 รอบ สำหรับการวัด 12 รอบ "10k" จะต้องถูกแทนที่ด้วย " <i>P</i> _{1k} , <i>P</i> _{2k} , <i>P</i> _{3k} , <i>P</i> _{4k} , <i>P</i> _{sumk} = <i>P</i> _{1k} + <i>P</i> _{2k} + <i>P</i> _{3k} + <i>P</i> _{4k} <i>P</i> _{1k} , <i>P</i> _{2k} , <i>P</i> _{sum1k} = <i>P</i> _{1k} + <i>P</i> _{2k} <i>P</i> _{3k} , <i>P</i> _{4k} , <i>P</i> _{sum2k} = <i>P</i> _{3k} + <i>P</i> _{4k} <i>P</i> _{sumk} = <i>P</i> _{sum1k} + <i>P</i> _{sum2k} <i>P</i> _{1k} , <i>P</i> _{2k} , <i>P</i> _{sum1k} = <i>P</i> _{1k} + <i>P</i> _{2k} <i>P</i> _{3k} , <i>P</i> _{4k} , <i>P</i> _{sum2k} = <i>P</i> _{3k} + <i>P</i> _{4k} <i>P</i> _{3k} , <i>P</i> _{4k} , <i>P</i> _{sum2k} = <i>P</i> _{3k} + <i>P</i> _{4k} <i>P</i> _{sumk} = <i>P</i> _{sum1k} + <i>P</i> _{sum2k} <i>u</i> ₅ v, <i>p</i> _{4k} , <i>P</i> _{sum2k} = <i>P</i> _{3k} + <i>P</i> _{4k} <i>P</i> _{3k} , <i>P</i> _{4k} , <i>P</i> _{sum2k} = <i>P</i> _{3k} + <i>P</i> _{4k} <i>P</i> _{sumk} = <i>P</i> _{sum1k} + <i>P</i> _{sum2k} <i>u</i> ₅ v, <i>p</i> _{4k} , <i>P</i> _{sum2k} = <i>P</i> _{3k} + <i>P</i> _{4k}	
1P2W-1 to 4 1P3W-1 to 2 3P3W-1 to 2 3P3W3A	รอบการวัดในสมการนิคือ 10 รอบ สำหรับการวัด 12 รอบ "10k" จะต้องถูกแทนที่ด้วย " P _{1k} , P _{2k} , P _{3k} , P _{4k} , P _{sumk} =P _{1k} +P _{2k} +P _{3k} +P _{4k} P _{1k} , P _{2k} , P _{sum1k} =P _{1k} +P _{2k} P _{3k} , P _{4k} , P _{sum2k} =P _{3k} +P _{4k} P _{sumk} =P _{sum1k} +P _{sum2k} P _{1k} , P _{2k} , P _{sum1k} =P _{1k} +P _{2k} P _{3k} , P _{4k} , P _{sum2k} =P _{3k} +P _{4k} P _{3k} , P _{4k} , P _{sum2k} =P _{3k} +P _{4k} P _{sumk} =P _{sum1k} +P _{sum2k} ussõulwinum P _{1k} :V ₁ = (V ₁₂ -V ₃₁ )/3, P _{2k} :V ₂ = (V ₂₃ -V ₁₂ )/3, P _{3k} :V ₃ = (V ₃₁ -V ₂₃ )/3 P _{sumk} =P _{1k} +P _{2k} +P _{3k}	

$P_{Ck}=V_{c(10k)r}\times A_{c(10k)i}-V_{c(10k)i}\times A_{c(10k)r}$	
<ul> <li>c: ช่องทางการวัด: A_{1k}, A_{2k}, A_{3k}, A_{4k}, k: ฮาร์โม</li> </ul>	นิกของแต่ละลำดับ
r: จำนวนจริงหลังจากการแปลง FFT, i: จำนว	วนจินตภาพหลังการแปลง FFT
รอบการวัดในสมการนี้คือ 10 รอบ สำหรับการวัด 12 รอบ "10k" จะต้องถูกแทนที่ด้วย	
$Q_{1k}Q_{2k}, Q_{3k}, Q_{4k}, Q_{sumk}=Q_{1k}+Q_{2k}+Q_{3k}+Q_{4k}$	k
Q1k, Q2k, Qsum1k=Q1k+Q2k	
Q _{3k} , Q _{4k} , Q _{sum2k} =Q _{3k} +Q _{4k}	
Q _{sumk} =Q _{sum1k} +Q _{sum2k}	
Q1k, Q2k, Qsum1k=Q1k+Q2k	
Q _{3k} , Q _{4k} , Q _{sum2k} =Q _{3k} +Q _{4k}	
Q _{sumk} =Q _{sum1k} +Q _{sum2k}	
แรงดันไฟฟ้าเฟส <i>Q_{1k}:V₁ = (V₁₂-V₃₁)/3, Q₂₁</i>	k:V2 = ( V23-V12)∕3,
Q _{3k} :V ₃ = ( V ₃₁ -V ₂₃ )/3, Q	sumk=Q1k+Q2k+Q3k
$Q_{1k}, Q_{2k}, Q_{3k}, Q_{sumk} = Q_{1k} + Q_{2k} + Q_{3k}$	
เพื้ยนรวมของแรงดันไฟฟ้าฮาร์โ	โมนิก THDVF (%)
4 หลัก	
0.0% - 100.0%	
$THDVF_{c} = \frac{\sqrt{\sum_{k=2}^{50} (V_{ck})^{2} \times 100}}{V_{c1}}$	c: ช่องทางการวัด V: แรงดันไฟฟ้าฮาร์โมนิก k: ฮาร์โมนิกของแต่ละลำดับ
แรงดันไฟฟ้าของสาย THDVF12_THDVF32	
แรงดันไฟฟ้าของสาย THDVF12, THDVF23, T	HDVF31
THDVF1, THDVF2, THDVF3	
เพื่ยนรวมของกระแสไฟฟ้าฮาร์โ	โมนิก THDAF (%)
4 หลัก	
0.0% - 100.0%	
$\sqrt{\sum_{k=2}^{50} (A_{ck})^2} \times 100$	c: ch การวัด THDAF ₁ , THDAF ₂ , THDAF ₃ , THDAF ₄
	$Pc_k=V_{c(10k)r} \times A_{c(10k)r} V_{c(10k)r} \times A_{c(10k)r}$ с: ช่องทางการวัด: $A_{1k}, A_{2k}, A_{3k}, A_{4k}, k: ฮาร์โม         r: จำนวนจริงหลังจากการแปลง FFT, i: จำน         รอบการวัดในสมการนี้คือ 10 รอบ สำหรับกา         Q_{1k}Q_{2k}, Q_{3k}, Q_{4k}, Q_{sumk}=Q_{1k}+Q_{2k}+Q_{3k}+Q_{4k} Q_{1k}, Q_{2k}, Q_{sum1k}=Q_{1k}+Q_{2k} Q_{3k}, Q_{4k}, Q_{sum2k}=Q_{3k}+Q_{4k} Q_{3k}, Q_{4k}, Q_{sum1k}=Q_{1k}+Q_{2k} Q_{3k}, Q_{4k}, Q_{sum2k}=Q_{3k}+Q_{4k} Q_{3k}, Q_{4k}, Q_{sum1k}=Q_{1k}+Q_{2k} Q_{3k}, Q_{4k}, Q_{sum1k}=Q_{1k}+Q_{2k} Q_{3k}, Q_{4k}, Q_{sum1k}=Q_{1k}+Q_{2k} Q_{3k}, Q_{4k}, Q_{sum2k}=Q_{3k}+Q_{4k} Q_{3k}, Q_{4k}, Q_{sum1k}+Q_{2k} Q_{3k}, Q_{4k}, Q_{sumk}+Q_{4k} Q_{3k}, Q_{4k}, Q_{3k}, Q_{sumk}=Q_{1k}+Q_{2k} Q_{3k}, Q_{4k}, Q_{3k}, Q_{sumk}=Q_{1k}+Q_{2k}+Q_{3k} SWEUUSONOSOUSSOUSSOUSSOUSSOUSSOUSSOUSSOUSSO$

# <u>รายการที่วัดได้ด้วยการวัดฮาร์โมนิก</u> ปัจจัยความผิดเพี้ยนรวมของแรงดันไฟ<u></u>ฟ้าฮาร์โมนิก THDVR (%)

หลักที่แสดง	4 หลัก	
ช่วงการแสดงผล	0.0% - 100.0%	
สมการ	$THDVRc = \frac{\sqrt{\sum_{k=2}^{50} (V_{ck})^2} \times 100}{\sqrt{\sum_{k=1}^{50} (V_{ck})^2}} $ c: ช่องทางการวัด V: แรงดันไฟฟ้าฮาร์โมนิก k: ฮาร์โมนิกของแต่ละลำดับ	
1P2W-1 to 4	THDVR ₁	
1P3W-1 to 2	THDVR ₁ , THDVR ₂	
3P3W-1 to 2	แรงดันไฟฟ้าของสาย <i>THDVR_{12 ,} THDVR₃₂</i>	
3P3W3A	แรงดันไฟฟ้าของสาย THDVR _{12 ,} THDVR _{23 ,} THDVR ₃₁	
3P4W	THDVR ₁ , THDVR ₂ , THDVR ₃	

#### ปัจจัยความผิดเพี้ยนรวมของกระแสไฟฟ้าฮาร์โมนิก THDAR (%)

หลักที่แสดง	4 หลัก	
ช่วงการแสดงผล	0.0% - 100.0%	
สมการ	$THDARc = \frac{\sqrt{\sum_{k=2}^{50} (A_{ck})^2} \times 100}{\sqrt{\sum_{k=1}^{50} (A_{ck})^2}}$	c: ch การวัด THDAR ₁ , THDAR ₂ , THDAR ₃ , THDAR ₄ A: กระแสไฟฟ้าฮาร์โมนิก k: ฮาร์โมนิกของแต่ละลำดับ

### มุมเฟสแรงดันไฟฟ้าฮาร์โมนิก θVK (deg)

หลักที่แสดง	4 หลัก	
ช่วงการแสดงผล	0.0° ถึง ±180.0°	
สมการ	$\theta V_{ck} = \tan^{-1} \left\{ \frac{V_{ckr}}{-V_{cki}} \right\}$	c: ช่องทางการวัด V: แรงดันไฟฟ้าฮาร์โมนิก k: ฮาร์โมนิกของแต่ละลำดับ r: จำนวนจริงหลังจากการแปลง FFT i: จำนวนจินตภาพหลังการแปลง FFT
1P2W-1 to 4	θV1k	
1P3W-1 to 2	$\theta V_{1k}, \theta V_{2k}$	
3P3W-1 to 2	θV12k , θV32k * แรงดันไฟฟ้าของสายถูกใช้	
3P3W3A	$ heta V_{12k}$ , $ heta V_{23k}$ , $ heta V_{31k}$ * แรงดันไฟฟ้าของสายถูกใช้	
3P4W	$\theta V_{1k}, \theta V_{2k}, \theta V_{3k}$	

#### <u>KEW6315</u>

#### <u>รายการที่วัดได้ด้วยการวัดฮาร์โมนิก</u>

### มุมเฟสกระแสไฟฟ้าฮาร์โมนิกรวม θAk (deg)

หลักที่แสดง	4 หลัก	
ช่วงการแสดงผล	0.0° ถึง ±180.0°	
สมการ	$\theta A_{ck} = \tan^{-1} \left\{ \frac{A_{ckr}}{-A_{cki}} \right\}$	c: ช่องทางการวัด <i>ฝA_{ik}, dA_{2k}, dA_{3k}, dA_{4k}</i> A: กระแสไฟฟ้าฮาร์โมนิก k:ฮาร์โมนิคของแต่ละลำดับ r: จำนวนจริงหลังจากการแปลง FFT i: จำนวนจินตภาพหลังการแปลง FFT

#### ความแตกต่างมุ่มเฟสกระแสไฟฟ้าและแรงดันไฟฟ้าฮาร์โมนิก θk (deg)

หลักที่แสดง	4 หลัก
ช่วงการแสดงผล	0.0º ถึง ±180.0º
สมการ	$ heta_{ck} =  heta A_{ck}$ – $ heta V_{ck}$ c: ช่องทางการวัด, k: ฮาร์โมนิกของแต่ละลำดับ
1P2W-1 to 4	$\theta_{1k}, \theta_{2k}, \theta_{3k}, \theta_{4k}, \ \theta_{sumk} = \tan^{-1}\left\{\frac{Q_{sumk}}{P_{sumk}}\right\}$
1P3W(3P3W)-1 to 2	$\theta_{1k}, \theta_{2k}, \ \theta_{sum1k} = \tan^{-1}\left\{\frac{Q_{sum1k}}{P_{sum1k}}\right\}$
	$\theta_{3k}, \theta_{4k}, \ \theta_{sum2k} = \tan^{-1}\left\{\frac{Q_{sum2k}}{P_{sum2k}}\right\}$
	$\theta_{sumk} = \tan^{-1}\left\{\frac{Q_{sumk}}{P_{sumk}}\right\}$
3P3W3A(3P4W)-1	$\theta_{1k}, \theta_{2k}, \theta_{3k}, \ \theta_{sumk} = \tan^{-1}\left\{\frac{Q_{sumk}}{P_{sumk}}\right\}$

# <u>รายการที่วัดได้ด้วยการวัดคุณภาพกำลังไฟ</u> รายการที่วัดได้ด้วยการวัดคุณภาพกำลังไฟ ภาวะแรงดันไฟฟ้าชั่วคราว

ระบบการวัด	การตรวจจับเหตุการณ์โดยไม่มีช่องว่างประมาณ 40.96ksps (ทุกๆ 24 µs)	
	(50 Hz/60 Hz)	
หลักทีแสดง	4 หลัก	
ช่วงอินพุตประสิทธิผล	50 V-2200 V (DC)	
ช่วงการแสดงผล	50 V-2200 V (DC)	
ความแม่นยำ	0.5%rdg * ที่ 1000 V (DC)	
อิมพีแดนซ์อินพุต	ประมาณ 1.67 MΩ	
ค่าเกณฑ์	ค่าแรงดันไฟฟ้าสูงสุดสัมบูรณ์	
ช่องทางการตรวจหา (	ch)	
1P2W-1 to 4	V ₁	
1P3W-1 to 2	V1, V2	
3P3W-1 to 2	แรงดันไฟฟ้าของสาย V ₁₂ , V ₃₂	
3P3W3A	แรงดันไฟฟ้าของสาย V12, V23, V31	
3P4W	V ₁ , V ₂ , V ₃	
ค่า Swell, Dip, I	NT ของแรงดันไฟฟ้า	
ช่วง	เหมือนกับแรงดันไฟฟ้า r.m.s.	
หลักที่แสดง	เหมือนกับแรงดันไฟฟ้า r.m.s.	
ช่วงอินพุต ประสิทธิผล	เหมือนกับแรงดันไฟฟ้า r.m.s.	
ช่วงการแสดงผล	เหมือนกับแรงดันไฟฟ้า r.m.s.	
ตัวประกอบยอดคลื่น	เหมือนกับแรงดันไฟฟ้า r.m.s.	
อิมพีแดนซ์อินพุต	เหมือนกับแรงดันไฟฟ้า r.m.s.	
ค่าเกณฑ์	เปอร์เซ็นต์ของค่าแรงดันไฟฟ้านอมินอล	
ระบบการวัด	สอดคล้องตาม IEC61000-4-3	
	*ค่า r.m.s. ถูกคำนวณจากหนึ่งรูปคลื่นพร้อมการซ้อนทับกันครึ่งรูปคลื่น	
	การตรวจจับฺค่าเกิน การตกชั่วข [ุ] ณะ ของแรงดันไฟฟ้าสำหรับระบบ [ิ] หลายเฟส	
	เริ่มต้นเมื่อเหตุการณ์ใดเหตุการณ์หนึ่งเริ่มต้นที่ ch ใดๆ สิ้นสุดเมื่อสิ้นสุด	
	การตรวจจับค่า INT ของแรงดั้นไฟฟ้าสำหรับระบบหลายเฟส	
	เริ่มต้นเมื่อเหตการณ์เริ่มต้นที่ ch ทั้งหมด สิ้นสดเมื่อสิ้นสดที่ ch ใดๆ	
ความแม่นยำ	ี่ 10% - 150% (ถึงแรงดันไฟฟ้าทีกำหนด 100 V หรือ สูงกว่า) : แรงดันไฟฟ้าทีกำหนด ±1.0%	
	อยู่นอกช่วง : ±0.4%rdg±0.4%f.s.	
	ข้อ [ั] ผิดพลาดของการวัดระยะเวลาเหตุการณ์ที่ 40 – 70 Hz    : ภายใน 1 รอบ	
ช่องทางการตรวจหา (	ch)	
1P2W-1 to 4	V1	
1P3W-1 to 2	V ₁ , V ₂	
3P3W-1 to 2	แรงดันไฟฟ้าของสาย V _{12 ,} V ₃₂	
3P3W3A	แรงดันไฟฟ้าของสาย V ₁₂ , V ₂₃ , V ₃₁	
3P4W	V ₁ , V ₂ , V ₃	

#### กระแสไฟไหลเข้า

<u>าระแส เพ เหลเข′</u>	1
ช่วง	เหมือนกับกระแสไฟฟ้า r.m.s.
หลักที่แสดง	เหมือนกับกระแสไฟฟ้า r.m.s.
ช่วงอินพุต ประสิทธิผล	เหมือนกับกระแสไฟฟ้า r.m.s.
ช่วงการแสดงผล	เหมือนกับกระแสไฟฟ้า r.m.s.
ตัวประกอบยอดคลื่น	เหมือนกับกระแสไฟฟ้า r.m.s.
อิมพีแดนซ์อินพุต	เหมือนกับกระแสไฟฟ้า r.m.s.
ค่าเกณฑ์	เปอร์เซ็นต์ของช่วงการวัด
ระบบการวัด	คำนวณค่า r.m.s. จากหนึ่งรูปคลื่นพร้อมการซ้อนทับกันครึ่งรูปคลื่น
ความแม่นยำ	±0.4%rdg±0.4%f.s.+ ความแม่นยำของเซ็นเซอร์แคลมป์
ช่องทางการตรวจจับ	A ₁ , A ₂ , A ₃ , A ₄
(ch)	

6	<u>เคุณภาพกำลังไฟ</u> KE	
ะพริบ		
รายการที่แสดง	Time left: เวลาที่นับถอยหลังจนกว่าการคำนวณ Pst จะเสร็จสิ้น	
	V: แรงดันไฟฟ้า r.m.s. ต่อครึ่งคลื่น เฉลี่ย 1 วินาที	
	Pst(1min):  ค่าการกะพริบสำหรับ 1 นาที (ค่า Pst ref)	
	Pst: ความรุนแรงของการกะพริบในระยะสั้น (10 นาที)	
	Plt: ความรุนแรงของการกะพริบในระยะยาว (2 ชั่วโมง)	
	Max Pst: ค่าสูงสุดของ Pst และข้อมูลเวลา	
	Max Plt: ค่าสูงสุดของ Plt และข้อมูลเวลา	
	กราฟแนวโน้มล่าสุด Pst(1min) (สำหรับ 120 นาทีล่าสุด)	
	กราฟแนวโน้ม Plt สำหรับ 600 ชั่วโมงล่าสุด	
หลักที่แสดง	4 หลัก, ความละเอียด: log 0.001 - 6400 P.U. ใน 1024 แยกส่วน	
แบบจำลองการ	เพิ่มระดับ 230V/เพิ่มระดับ 220V/เพิ่มระดับ 120V/เพิ่มระดับ 100V	
เพิ่มระดับ		
วิธีการวัด	สอดคล้องกับ IEC61000-4-30 และ IEC61000-4-15 Ed.2	
ความแม่นยำ		
สมการ		
Pst(1min)c , Pstc	=	
$\sqrt{0.0314\times}$	$P_{0.1} + 0.0525 \times P_{1S} + 0.0657 \times P_{3S} + 0.28 \times P_{10S} + 0.08 \times P_{50S}$	
V _{1S} =(P _{0.7} +P ₁ +P _{1.5}	5)/3 , V3S=(P2.2+P3+P4)/3 , V10S=(P6+P8+P10+P13+P17)/5 ,	
V50S=(P30+P50+	P ₈₀ )/3 c: ช่องทางการวัด	
ข้อมูลการวัด 10 น	าที [*] แบ่งออกเป็น 1,024 คลาส (0 - 6400P.U.) โดยใช้การจำแนกแบบไม่เชิงเส้น เพื่อกำหนด	
ข้อมูลการวัด 10 น ฟังก์ชันความน่าจะ	หาที* แบ่งออกเป็น 1,024 คลาส (0 - 6400P.U.) โดยใช้การจำแนกแบบไม่เชิงเส้น เพื่อกำหนด ะเป็นสะสม (CPF) จากนั้นจะได้รับการแก้ไขโดยวิธีการประมาณค่าแบบไม่เชิงเส้น และทำกา	
ข้อมูลการวัด 10 น ฟังก์ชันความน่าจะ คำนวณด้วยค่าที่บ	หาที* แบ่งออกเป็น 1,024 คลาส (0 - 6400P.U.) โดยใช้การจำแนกแบบไม่เชิงเส้น เพื่อกำหนด ะเป็นสะสม (CPF) จากนั้นจะได้รับการแก้ไขโดยวิธีการประมาณค่าแบบไม่เชิงเส้น และทำกา  รับให้เรียบ * Pst(1min): 1 นาที	
ข้อมูลการวัด 10 น ฟังก์ชันความน่าจ คำนวณด้วยค่าที่บ	หาที* แบ่งออกเป็น 1,024 คลาส (0 - 6400P.U.) โดยใช้การจำแนกแบบไม่เชิงเส้น เพื่อกำหนด ะเป็นสะสม (CPF) จากนั้นจะได้รับการแก้ไขโดยวิธีการประมาณค่าแบบไม่เชิงเส้น และทำกา  รับให้เรียบ * Pst(1min): 1 นาที ∑ ▶ Pst ³	
ข้อมูลการวัด 10 น ฟังก์ชันความน่าจ คำนวณด้วยค่าที่บ $Plt_{-} = 3 \times 1$	มาที* แบ่งออกเป็น 1,024 คลาส (O - 6400P.U.) โดยใช้การจำแนกแบบไม่เชิงเส้น เพื่อกำหนเ ะเป็นสะสม (CPF) จากนั้นจะได้รับการแก้ไขโดยวิธีการประมาณค่าแบบไม่เชิงเส้น และทำกา  รับให้เรียบ * Pst(1min): 1 นาที ∑ 	
ข้อมูลการวัด 10 น ฟังก์ชันความน่าจ คำนวณด้วยค่าที่บ $Plt_C = 3 \times \sqrt{\frac{2}{r}}$	มาที* แบ่งออกเป็น 1,024 คลาส (0 - 6400P.U.) โดยใช้การจำแนกแบบไม่เชิงเส้น เพื่อกำหนผ ะเป็นสะสม (CPF) จากนั้นจะได้รับการแก้ไขโดยวิธีการประมาณค่าแบบไม่เชิงเส้น และทำกา <u>Jรับให้เรียบ * Pst(1min): 1 นาที </u>	
ข้อมูลการวัด 10 น ฟังก์ชันความน่าจ คำนวณด้วยค่าที่บ $Plt_C = 3 \times \sqrt{\frac{2}{-1}}$ 1P2W-1 to 4	มาที* แบ่งออกเป็น 1,024 คลาส (0 - 6400P.U.) โดยใช้การจำแนกแบบไม่เชิงเส้น เพื่อกำหนเ ะเป็นสะสม (CPF) จากนั้นจะได้รับการแก้ไขโดยวิธีการประมาณค่าแบบไม่เชิงเส้น และทำกา <u> รับให้เรียบ</u> * Pst(1min): 1 นาที <u></u>	
ข้อมูลการวัด 10 น ฟังก์ชันความน่าจ คำนวณด้วยค่าที่น $Plt_{C} = 3 \times \sqrt{\frac{2}{L}}$ 1P2W-1 to 4 1P3W-1 to 2	มาที* แบ่งออกเป็น 1,024 คลาส (0 - 6400P.U.) โดยใช้การจำแนกแบบไม่เชิงเส้น เพื่อกำหนผ ะเป็นสะสม (CPF) จากนั้นจะได้รับการแก้ไขโดยวิธีการประมาณค่าแบบไม่เชิงเส้น และทำกา Jรับให้เรียบ * Pst(1min): 1 นาที <u>&gt; Pst_i³ =1 C: ช่องการวัดผล, N:12 ครั้ง (การวัด 2 ชั่วโมง) Pst(1min)1, Pst1, Plt1 Pst(1min)2, Pst2, Plt2</u>	
ข้อมูลการวัด 10 น ฟังก์ชันความน่าจ คำนวณด้วยค่าที่บ Plt _C = 3 × \ 1P2W-1 to 4 1P3W-1 to 2 3P3W-1 to 2	มาที* แบ่งออกเป็น 1,024 คลาส (0 - 6400P.U.) โดยใช้การจำแนกแบบไม่เชิงเส้น เพื่อกำหนด ะเป็นสะสม (CPF) จากนั้นจะได้รับการแก้ไขโดยวิธีการประมาณค่าแบบไม่เชิงเส้น และทำกา รับให้เรียบ * Pst(1min): 1 นาที <u>N</u> <u>Pst³</u> Pst(1min)1, Pst1, Plt1 Pst(1min)1, Pst1, Plt1 Pst(1min)1, Pst1, Plt1 แรงดันไฟฟ้าของสาย Pst(1min)12 Pst12, Plt12, Pst(1min)32 Pst32, Plt32	
ข้อมูลการวัด 10 น ฟังก์ชันความน่าจ คำนวณด้วยค่าที่น Plt _C = 3 × \ 1P2W-1 to 4 1P3W-1 to 2 3P3W-1 to 2 3P3W3A	มาที* แบ่งออกเป็น 1,024 คลาส (0 - 6400P.U.) โดยใช้การจำแนกแบบไม่เชิงเส้น เพื่อกำหนด ะเป็นสะสม (CPF) จากนั้นจะได้รับการแก้ไขโดยวิธีการประมาณค่าแบบไม่เชิงเส้น และทำกา ]รับให้เรียบ * Pst(1min): 1 นาที 	
ข้อมูลการวัด 10 น ฟังก์ชันความน่าจ คำนวณด้วยค่าที่เ Plt _C = 3 × \ 1P2W-1 to 4 1P3W-1 to 2 3P3W-1 to 2 3P3W3A	มาที* แบ่งออกเป็น 1,024 คลาส (0 - 6400P.U.) โดยใช้การจำแนกแบบไม่เชิงเส้น เพื่อกำหนด ะเป็นสะสม (CPF) จากนั้นจะได้รับการแก้ไขโดยวิธีการประมาณค่าแบบไม่เชิงเส้น และทำกา 	

# _{KEW6315} 10.4 ข้อมูลจำเพาะของเซ็นเซอร์แคลมป์

	<model8128></model8128>	<model8127></model8127>	<model8126></model8126>
พิกัดกระแสไฟ	AC 5Arms (สูงสุด 50 A rms AC (70.7A สูงสุด))	AC 100Arms (141A สูงสุด)	AC 200Arms (283A สูงสุด)
แรงดันไฟฟ้าเอาต์พุต	0 - 50mV (50 mV AC / 5A AC) (สูงสุด 500 mV AC /50 A AC): 10 mV/ A	ACO - 500mV (AC500mV/AC100A):5mV/A	ACO - 500mV (AC 500mV/AC200A):2.5mV/A
ช่วงการวัด	0 – 50 A rms AC	ACO - 100Arms	ACO - 200Arms
ความแม่นยำ (อินพุตคลื่นไซน์)		±0.5%rdg±0.1mV (50/60Hz) ±1.0%rdg±0.2mV (40Hz - 1kHz)	
คุณลักษณะ ทางเฟส	ภายใน ±2.0° (0.5 – 50 A/45 – 65 Hz)	ภายใน ±2.0° (1 - 100A/45 - 65Hz)	ภายใน ±1.0° (2 - 200A/45 - 65Hz)
ช่วงอุณหภูมิและความชื้น (ความแม่นยำที่รับประกัน)	23±5⁰C, ความชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มีการควบแน่น)		าารควบแน่น)
ช่วงอุณหภูมิ การทำงาน	0 - 50ºC, คว	ามชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มี	การควบแน่น)
ช่วงอุณหภูมิ การจัดเก็บ	-20 ถึง 60ºC, ศ	าวามชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม	เม็การควบแน่น)
อินพุตที่อนุญาต	50 A rms AC (50/60 Hz)	100A rms AC (50/ 60 Hz)	200A rms AC (50/60 Hz)
อิมพีแดนซ์เอาต์พุต	ประมาณ 20 Ω	ประมาณ 10 Ω	ประมาณ 5 Ω
ตำแหน่งการใช้	การใช้งานภ	เายในอาคาร ระดับความสูง 2000 m ห	เรือน้อยกว่า
มาตรฐาน ที่เกี่ยวข้อง	IEC 61010-1, IE การวัด CAT III (300 IEC6	C 61010-2-032 D V), ระดับมลพิษ 2 1326	IEC 61010-1, IEC 61010-2-032 การวัด CAT III (600 V), ระดับมลพิษ 2 IEC61326
ความทนต่อ แรงดันไฟฟ้า	3540 V AC /5 วินาที ระหว่างก้ามปู – โครง โครง - ชั้วเอาต์พุต และ ก้ามปู - ชั้วเอาต์พุต		5350 V AC/ 5 วินาที ระหว่างก้ามปู – โครง โครง - ขั้วเอาตัพุต และ ก้ามปู - ขั้วเอาตัพุต
ฉนวน ความต้านทาน	ระหว่างก้ามบุ	50 MΩ หรือมากกว่า/ 1000 V J - โครง, โครง - ขั้วเอาต์พุต, และก้ามปู	- ขั้วเอาต์พุต
ขนาดตัวนำสูงสุด	ประมาณ ø24	1 mm (สูงสุด)	ประมาณ ø40 mm (สูงสุด)
ขนาด	100(L)×60(W	/)×26(D) mm	128(L)×81(W)×36(D) mm
ความยาวสายเคเบิล	ประมาณ 3 m		
ขั้วเอาต์พุต		MINI DIN 6PIN	
น้ำหนัก	ประมาณ 160 g		ประมาณ 260 g
อุปกรณ์เสริม		ดูมือการใช้งาน เครื่องหมายสายเคเบิล	
ชิ้นส่วนอุปกรณ์เสริม	7146 (ปลั๊กต์	กัวปรับแบบบานานา ø4), 7185(สายเคเง่	บิลต่อขยาย)
KEW6315		- 152 -	

	<model8125></model8125>	<model8124></model8124>	
พิกัดกระแสไฟ	500 A rms AC (707A สูงสุด)	1000 A rms AC (1414 A สูงสุด)	
แรงดันไฟฟ้าเอาต์พุต	0 – 500 mV AC (500 mV AC /500 A): 1 mV/A AC	0 – 500 mzV AC (500 mV AC /1000 A):0.5 mV/ A	
ช่วงการวัด	0 – 500 A rms AC	0 – 1000 A rms AC	
ความแม่นยำ (อินพุตคลื่นไซน์)	±0.5%rdg±0.1 mV (50/60 Hz) ±1.0%rdg±0.2 mV (40 Hz – 1 kHz)	±0.5%rdg±0.2 mV (50/60 Hz) ±1.5%rdg±0.4 mV (40 Hz – 1 kHz)	
คุณลักษณะ ทางเฟส	ภายใน ±1.0° (5 - 500A/45 – 65 Hz)	ภายใน ±1.0° (10 - 1000A/45 – 65 Hz)	
ช่วงอุณหภูมิและความชื่น (ความแม่นยำที่รับประกัน)	23±5°C, ความชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มีการควบแน่น)		
ช่วงอุณหภูมิ การทำงาน	0 - 50ºC, ความชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มีการควบแน่น)		
ช่วงอุณหภูมิ การทำงาน	-20~60ºC, ความชื้นสัมพัทธ์ 859	6 หรือน้อยกว่า (ไม่มีการควบแน่น)	
อินพุตที่อนุญาต	500 A rms AC (50/60 Hz)	1000 A rms AC (50/60 Hz)	
อิมพีแดนซ์เอาต์พุต	ประมาณ 2Ω	ประมาณ 1Ω	
ตำแหน่งการใช้	การใช้งานภายในอาคาร, คว	ามสูง 2000m หรือน้อยกว่า	
มาตรฐาน ที่เกี่ยวข้อง	IEC 61010-1, IEC 61010-2-032 การวัด CAT III (600V), ระดับมลพิษ 2 IEC61326		
ความทนต่อแรงดันไฟฟ้า	5350 V AC /5 วนาท ระหว่างก้ามปู - โครง, โครง - ขั้วเอาต์พุต, และก้ามปู - ขั้วเอาต์พุต		
ฉนวน ความต้านทาน	50 MΩ หรือมา ระหว่างก้ามปู - โครง, โครง - ขั้ว	50 MΩ หรือมากกว่า/ 1000 V ระหว่างก้ามปู - โครง, โครง - ขั้วเอาต์พุต, และก้ามปู - ขั้วเอาต์พุต	
ขนาดตัวนำสูงสุด	ประมาณ ø40 mm (สูงสุด)	ประมาณ ø68 mm (สูงสุด)	
ขนาด	128(L)×81(W)×36(D) mm	186(L)×129(W)×53(D) mm	
ความยาวสายเคเบิล	ประมา	ໝ 3 m	
ขั้วเอาต์พุต	MINI DI	IN 6PIN	
น้ำหนัก	ประมาณ 260 g	ประมาณ 510 g	
อุปกรณ์เสริม	คู่มือการใช้งาน, เคร	คู่มือการใช้งาน, เครื่องหมายสายเคเบิล	
ชิ้นส่วนอุปกรณ์เสริม	7146 (ปลั๊กตัวปรับแบบบานานา ø4), 7185(สายเคเบิลต่อขยาย)		

	<kew8129></kew8129>	<kew8130></kew8130>	<kew8133></kew8133>	<kew8135></kew8135>
	Discontinued			
พิกัดกระแสไฟ	ช่วง 300A: 300 A rms AC (424A สูงสุด) ช่วง 1000A: 1000 A rms AC (1414A สูงสุด) ช่วง 3000A: 3000 A rms AC (4243A สงสด)	1000 A rms AC (1850 A สูงสุด)	3000 A rms AC (5515A สูงสุด)	50 Arms AC (92 A สูงสุด)
แรงดันไฟฟ้า เอาต์พุต	ช่วง 300A : AC0-AC500mV (AC500mV/AC300A) 1.67mV/A ช่วง 1000A : AC0-AC500mV (AC500mV/AC1000A) 0.5mV/A ช่วง 3000A: AC0-AC500mV (AC500mV/AC3000A) 0.167mV/A	0-500 mV AC (500 mV AC/000 A AC):0.5 mV/ A	0-500 mV AC (500 mV AC/3000 A AC): 0.167 mV/ A	0 – 500 mV AC (500 mV AC/50 A AC);10 mV/A
ช่วงการวัด	ช่วง 300A : 30 - 300Arms ช่วง 1000A : 100 - 1000Arms ช่วง 3000A: 300 - 3000Arms	0-1000 A rms AC	0-3000 A rms AC	0 - 50A rms AC
ความแม่นยำ (อินพุตคลื่นไซน์)	±1.0%rdg (45 - 65Hz) (ที่ตรงกลางของเซ็นเซอร์)	±0.8%rdg±0.2 mV (45-65 Hz) ±1.5%rdg±0.4 mV (40 Hz-1 kHz)	±1.0%rdg±0.5 mV (45-65 Hz) ±1.5%rdg±0.5 mV (40 Hz-1 kHz)	± 1.0%rdg ±0.5mV (45Hz - 65Hz) (0-50A) ± 1.5%rdg ±0.5mV (40Hz - 300H (0-20A) ± 1.5%rdg ±0.5mV (40Hz - 1kHz) (0-5A)
ลักษณะเฟส	ภายใน ±1.0° (วายใหม่ว ราวารวัดขาว มเก่าะช่าวระเวี่ 45 - 651-1)	ภายใน ±2.0°	(45-65 Hz)	(3 3/9 ภายใน ±3.0°(45 - 65Hz)
ช่วงอุณหภูมิและ ความชื้น (ความแม่นยำที่ รับประกัน) ช่วงอุดเหญิกวร	23±5°C, ความชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มีการควบแน่น)			
ทำงาน ท่างาน	-10 ถึง	ง 50°C, ความชื่นสัมพัทธ์ 85% หรือน้อยก 	เว่า (ไม่มีการควบแน่น)	
ขางอุณหมู่มากร จัดเก็บ		-20 ถึง 60°C, ความชื้นสัมพัทธ์ 85% ห	รือน้อยกว่า (ไม่มีการควบแน่น)	
อินพุตที่อนุญาต ลิ่มเนียงเห	3600 A rms AC (50/60 Hz)	1300 A rms AC (50/ 60 Hz)	3900 A rms AC (50/ 60 Hz)	65 Arms AC (50/60 Hz)
อมพแตนซ เอาต์พุต		ประมาณ 100 Ω หรือน้อ	ยกว่า	
ตำแหน่งการใช้ 		การใช้งานภายในอาคาร, ความสู I	ง 2000m หรือน้อยกว่า	
มาตรฐานที เกี่ยวข้อง	IEC 61010-1, IEC 61010-2-032 CAT การวัด III 600V, ระดับมลพิษ 2, IEC61326	CAT การวัด I	IEC 61010-1, IEC 61010-2-032 II 600 V/CAT IV 300 V, ระดับมลพิษ	+ 2, IEC61326
ความทนต่อแรง ดันไฟฟ้า	5350 V AC / 5 วินาที 5160 V AC / 5 วินาที ระหว่างวงจร - เซ็นเซอร์ ระหว่างวงจร - เซ็นเซอร์			
ความต้านทาน ของฉนวน		50 MΩ หรือมากกว่า/ 10 ระหว่างวงจร - เช็นเช	000 V อร์	
ขนา <mark>ดตัวนำ</mark> สูงสุด	ประมาณ ø150mm (สูงสุด)	ประมาณ ø110mm (สูงสุด)	ประมาณ ø170mm (สูงสุด)	ประมาณ ø75mm (สูงสุด)
ขนาด	111(L) × 61(W)× 4 3(D) mm (ไม่รวมส่วนยื่น)		65(L)×24(W)×22(D) mm	
ความยาวสาย เคเบิล	ส่วนเซ็นเซอร์: ประมาณ 2 m สายแคเบิลเอาต์พยะประบาณ 1 m		ส่วนเซ็นเซอร์: ประมาณ 2.7 m สายแตเบิลเอาต์พต• ประมาณ 0.2 m	
• ขั้วเอาต์พต	61 10661606160 1011906 0 3044 1616 1111	MINI DIN 6F	PIN	
น้ำหนัก	8129-1: ประมาณ 410 g 8129-2: ประมาณ 680 g 8129-3: ประมาณ 950 g	ประมาณ 180 g	ประมาณ 200 g	ประมาณ 170 g
อุปกรณ์เสริม	คู่มือการใช้งาน, สายเคเบิลเอาต์พุต (M-7199), กระเป๋าหิ้ว	คู่มือก	ารใช้งาน, เครื่องหมายสายเคเบิล, กระ	เป๋าหิ้ว
ชิ้นส่วน		_		
อุปกรณ์เสรีม				

- 154 -

	<model8141></model8141>	<model8142></model8142>	<model8143></model8143>
	Discontinued product	Discontinued product	Discontinued. product
พิกัดกระแสไฟ		1000m A rms AC	
แรงดันไฟฟ้าเอาต์พุต	0	– 100 mV AC (100 mV AC/ 1000 mA	AC)
ช่วงการวัด		0 – 1000 m A rms AC	
ความแม่นยำ (อินพุตคลื่นไซน์)		±1.0%rdg±0.1 mV (50/60 Hz) ±2.0%rdg±0.1 mV (40 Hz – 1 kH	Z)
คุณลักษณะ ทางเฟส			
ร่วงอุณหภูมิและความชื้น จวามแม่นยำที่รับประกัน)	23±5⁰C, ความชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มีการควบแน่น)		
ช่วงอุณหภูมิ การทำงาน	0 - 50ºC, ความชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มีการควบแน่น)		
ช่วงอุณหภูมิ การทำงาน	-20 ถึง 60ºC, ความชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มีการควบแน่น)		
อินพุตที่อนุญาต	100 A rms AC (50/60 Hz)	200 A rms AC (50/60 Hz)	500 A rms AC (50/60 Hz
อิมพีแดนซ์เอาต์พุต	ประมาณ 180 Ω	ประมาณ 200 Ω	ประมาณ 120 Ω
ตำแหน่งการใช้	การใช้งานภายในอาคาร, ความสูง 2000m หรือน้อยกว่า		
มาตรฐาน ที่เกี่ยวข้อง	IEC 61010-1, IEC 61010-2-032 การวัด CAT III (300 V), ระดับมลพิษ 2 IEC61326 (มาตรฐาน EMC)		
ความทนต่อแรงดันไฟฟ้า	3540 V AC /5 วินาที ระหว่างก้ามปู – โครง ก้ามปู – ขั้วเอาต์พุต โครง – ขั้วเอาต์พุต		
ฉนวน ความต้านทาน	50 MΩ หรือมากกว่า/1000 V ระหว่างก้ามปู – โครง ก้ามปู – ขั้วเอาต์พุต โครง – ขั้วเอาต์พุต		
ขนาดตัวนำสูงสุด	ประมาณ ø24 mm (สูงสุด)	ประมาณ ø40 mm (สูงสุด)	ประมาณ ø68 mm (สูงสุด)
ขนาด	100(L)×60(W)×26(D) mm (ไม่รวมส่วนยื่น)	128(L)×81(W)×36(D) mm (ไม่รวมส่วนยื่น)	186(L)×129(W)×53(D) mm (ไม่รวมส่วนยื่น)
ความยาวสายเคเบิล		ประมาณ 2 m	
ขัวเอาต์พุต		MINI DIN 6PIN	1
น้ำหนัก	ประมาณ 150 g	ประมาณ 240 g	ประมาณ 490 g
อุปกรณ์เสริม		คู่มือการใช้งาน กระเป๋าหิ้ว	
ชิ้นส่วนอุปกรณ์เสริม	7146 (ปลั๊กตัวปรับแบบบานานา ø 4) 7185 (สายแอเบิลต่อขยายเ)		

		<u>10.4 ข้อมูลจำเพาะของเซ็นเซอร์แคล</u>
<kew8146></kew8146>	<kew8147></kew8147>	<kew8148></kew8148>
30 A rms AC (42.4 A สูงสุด)	70 A rms AC (99.0 A สูงสุด)	100 A rms AC (141.4 A สูงสุด)
0 – 1500 mV AC (AC50mV/A)	0 – 3500 mV AC (50 mV AC/ A)	0 – 5000 mV AC (50 mV AC/ A)
0 – 30 A rms AC	0 – 70 A rms AC	0 – 100 A rms AC
0 – 15 A ±1.0%rdg±0.1 mV (50/60 Hz) ±2.0%rdg±0.2 mV (40 Hz – 1 kHz) 15 – 30 A ±5.0%rdg (50/60 Hz) ±10.0%rdg (45 – 1 kHz)	0 – 40 A ±1.0%rdg±0.1 mV (50/60 Hz) ±2.0%rdg±0.2 mV (40 Hz – 1 kHz) 40 – 70 A ±5.0%rdg (50/60 Hz) ±10.0%rdg (45 – 1 kHz)	0 – 80 A ±1.0%rdg±0.1 mV (50/60 Hz) ±2.0%rdg±0.2 mV (40 Hz – 1 kH 80 – 100 A ±5.0%rdg (50/60 Hz) ±10.0%rdg (45 – 1 kHz)
23±5°C	ความชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มีการเ	ควบแน่น)
0 - 50°C	) ความชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มีการ	ควบแน่น)
-20 ถึง 60'	⁰C, ความชื้นสัมพัทธ์ 85% หรือน้อยกว่า (ไม่มีก	ารควบแน่น)
30 A rms AC (50/60 Hz)	70 A rms AC (50/60Hz)	, 100 A rms AC (50/60 Hz)
ประมาณ 90 Ω	ประมาณ 100 Ω	ประมาณ 60 Ω
	IEC 61010-1, IEC 61010-2-032 การวัด CAT III (300 V) ระดับมลพิษ 2 IEC61326 3540 V AC /5 วินาที ระหว่างก้ามปู – โครง โครง - ขั้วเอาต์พุต และ ก้ามปู - ขั้วเอาต์พุต	
ระหว่างก่	50 MΩ หรือมากกว่า/ 1000 V ้ามปู - โครง, โครง - ชั้วเอาต์พุต, และก้ามปู - ชั้	วเอาต์พุต
ประมาณ ø24 mm (สูงสุด)	ประมาณ ø40 mm (สูงสุด)	ประมาณ ø68 mm (สูงสุด)
100(L)×60(W)×26(D)mm	128(L)×81(W)×36(D)mm	186(L)×129(W)×53(D)mm
	ประมาณ 2 m MINI DIN 6DIN	
ประมาณ 150 g	ประมาณ 240 g	ประมาณ 510 g
	ู คู่มือการใช้งาน	
	เคร่องหมายสายเคเบิล	
-		
	7146 (ปลักตัวปรับแบบบานานา ø 4)	

### 11. การแก้ไขปัญหา

#### 11.1 การแก้ไขปัญหาทั่วไป

เมื่อสงสัยว่าอุปกรณ์มีข้้อบกพร่องหรือชำรุด ให้ตรวจสอบจุดต่อไปนี้ก่อน หากปัญหาของคุณไม่อยู่ในรายการในส่วนนี้ โปรดติดต่อผู้จัดจำหน่าย Kyoritsu ในพื้นที่ของคุณ

อาการ	ตรวจสอบ
ไม่สามารถเปิดเครื่องมือได้	<u>เมื่อทำงานด้วยแหล่งจ่ายไฟ AC:</u>
(ไม่มีสิ่งใดแสดงบนจอ LCD)	<ul> <li>สายไฟเชื่อมต่ออย่างแน่นหนาและถูกต้องหรือไม่</li> </ul>
(	<ul> <li>ไม่มีจุดแตกหักที่สายไฟ</li> </ul>
	<ul> <li>แรงดั่นไฟฟ้าจ่ายอยู่ภายในช่วงที่อนุญาตหรือไม่</li> </ul>
	เมื่อทำงานด้วยแบตเตอรี่:
	<ul> <li>ติดตั้งแบตเตอรี่โดยใส่ในขั้วที่ถูกต้องหรือไม่</li> </ul>
	• แบตเตอรี่ขนาด AA Ni-HM มีประจุเต็มหรือไม่
	<ul> <li>แบตเตอรี่อัลคาไลน์ขนาด AA ยังไม่หมดประจุใช่หรือไม่</li> </ul>
	<u>หากยังไม่สามารถแก้ไขปัญหาได้:</u>
	<ul> <li>ถอดสายไฟออกจากแหล่งจ่ายไฟ AC จากนั้นถอดแบตเตอรี่</li> </ul>
	ทั้งหมดออกจากเครื่องมือ ใส่แบตเตอรี่อีกครั้งและเชื่อมต่อ
	สายไฟเข้ากับแหล่งจ่ายไฟ AC เปิดเครื่องมือ หากเครื่องมือ
	ยังไม่เปิด อาจสงสัยได้ว่าเครื่องมือล้มเหลว
ไม่มีปุ่มใดใช้งานได้	<ul> <li>ฟังก์ชันล็อกปุ่มถูกปิดใช้งานหรือไม่</li> </ul>
	<ul> <li>ตรวจสอบปุ่มที่มีประสิทธิผลในแต่ละช่วง</li> </ul>
การอ่านไม่เสถียรหรือไม่แม่นยำ	<ul> <li>ความถี่ที่แรงดันไฟฟ้า ch1 อยู่ภายในความแม่นยำที่รับประกัน</li> </ul>
	หรือไม่ ความถี่ควรอยู่ระหว่าง 40 และ 70Hz
	<ul> <li>เชื่อมต่อสายทดสอบแรงดันไฟฟ้าและเซ็นเซอร์แคลมป์อย่าง</li> </ul>
	ถูกต้อง
	<ul> <li>การตั้งค่า เครื่องมือและการกำหนดค่าการเดินสายไฟที่เลือก</li> </ul>
	นั้นเหมาะสมหรือไม่
	<ul> <li>ใช้เซ็นเซอร์ที่เหมาะสมกับการตั้งค่าที่ถูกต้องหรือไม่</li> </ul>
	<ul> <li>ไม่มีรอยแตกในสายทดสอบแรงดันไฟฟ้าหรือไม่</li> </ul>
	<ul> <li>สัญญาณอินพุตไม่ถูกรบกวนหรือไม่</li> </ul>
	<ul> <li>มีสนามแม่เหล็กไฟฟ้าความเข้มข้นสูงอยู่ใกล้ๆ หรือไม่</li> </ul>
	<ul> <li>สภาพแวดล้อมการวัดตรงกับข้อมูลจำเพาะของเครื่องมือนี้</li> </ul>
	หรือไม่
	<ul> <li>ตรวจสอบการกำหนดค่าการเดินสายไฟและเซ็นเซอร์ที่เชื่อมต่อ</li> </ul>
ไม่สามารถบันทึกข้อมูลลงใน	<ul> <li>ตรวจสอบจำนวนไฟล์ในหน่วยความจำ</li> </ul>
หน่วยความจำภายในได้	<ul> <li>หากเสียบ SD การ์ดในเครื่องมือไว้ ให้ถอดการ์ดออก</li> </ul>

อาการ	ตรวจสอบ
ไม่สามารถบันทึกข้อมูลบน SD การ์ดได้	<ul> <li>ใส่ SD การ์ดอย่างถูกต้องหรือไม่</li> <li>ฟอร์แมต SD การ์ดแล้วใช่หรือไม่</li> <li>มีพื้นที่ ว่าง ใน SD การ์ดหรือไม่</li> <li>ตรวจสอบจำนวนไฟล์หรือความจุสูงสุดของ SD การ์ด</li> <li>การทำงานของ SD Sการ์ดได้รับการตรวจสอบแล้วหรือไม่</li> <li>ตรวจสอบว่า SD การ์ดทำงานได้ถูกต้องบนฮาร์ดแวร์อื่น ที่รู้จัก ดี</li> </ul>
การดาวน์โหลดและการตั้งค่าไม่สามารถ ทำได้ผ่านการสื่อสารด้วย USB	<ul> <li>การเชื่อมต่อสายเคเบิล USB ระหว่างเครื่องมือและ PC</li> <li>เรียกใช้ซอฟต์แวร์แอปพลิเคชันการสื่อสาร "KEW Windows for KEW6315" และตรวจสอบว่าอุปกรณ์ที่เชื่อมต่อแสดงขึ้นหรือไม่ หากไม่ได้แสดงผลอุปกรณ์ ไดร์เวอร์ USB อาจได้รับการติดตั้ง ไม่ถูกต้อง โปรดอ่านคู่มือการติดตั้งสำหรับ "KEW Windows for KEW6315" และติดตั้งไดร์เวอร์ USB ใหม่อีกครั้ง</li> </ul>
ในการวินิจฉัยด้วยตนเอง จะมีการตัดสินแบบ "NG" บ่อยครั้ง	หากมี "NG" สำหรับ "SD การ์ด" ให้ดูจุดตรวจสอบสำหรับ "ไม่สามารถ บันทึกข้อมูลใน SD การ์ดได้" ในคอลัมน์ด้านบน ถ้ามี "NG" สำหรับ รายการอื่น ถอดสายไฟออกจากแหล่งจ่ายไฟ AC จากนั้นถอด แบตเตอรี่ทั้งหมดออกจากเครื่องมือ ใส่แบตเตอรี่อีกครั้งและเชื่อมต่อ สายไฟเข้ากับแหล่งจ่ายไฟ AC และดำเนินการวินิจฉัยตัวเองอีกครั้ง หากยังมี "NG" อยู่ อาจสงสัยได้ว่าเครื่องมือล้มเหลว

#### 11.2 ข้อความแสดงข้อผิดพลาดและการดำเนินการ

ข้อความแสดงข้อผิดพลาดอาจปรากฏบน LCD ในขณะที่ใช้เครื่องมือ โปรดตรวจสอบตารางต่อไปนี้ว่าข้อความแสดง ข้อผิดพลาดใดๆ ปรากฏขึ้นหรือไม่ และดำเนินการ

รายละเอียดข้อความ	และการดำเนินการ
No SD card. Check the amount of free space in the SD card.	<ul> <li>ตรวจสอบว่าใส่ SD การ์ดอย่างถูกต้องหรือไม่ ดู</li> <li>"4.3 การใส่และการถอด SD การ์ด" (หน้า 33).</li> </ul>
Check the amount of free space in the SD card.	<ul> <li>ตรวจสอบพื้นที่ว่างใน SD การ์ด ถ้า พื้นที่ว่างไม่เพียงพอ ให้ลบแฟ้มที่ ไม่จำเป็นออก ฟอร์แมตการ์ดหรือใช้การ์ดอันอื่น ควรฟอร์แมต SD การ์ดใน KEW6315 ไม่ใช่ใน PC ดูที่ "เมื่อต้องการลบ ให้ถ่ายโอน หรือจัดรูปแบบข้อมูลที่บันทึกไว้" (หนัา 82)</li> </ul>
Failed to detect sensors. Check the connection of the sensor(s).	<ul> <li>ตรวจสอบการเชื่อมต่อของเซ็นเซอร์กระแสไฟฟ้า</li> <li>หากมีข้อสงสัยในปัญหาใดๆ โปรดทำการตรวจสอบต่อไปนี้ เชื่อมต่อเซ็นเซอร์ปัจจุบันที่ได้รับผล "NG" เข้ากับ CH ที่เซ็นเซอร์ อื่นตรวจพบอย่างถูกต้อง หากให้ผลลัพธ์ "NG" สำหรับ CH เดียวกัน แสดงว่าเครื่องมือมีข้อบกพร่อง สงสัยว่ามีข้อบกพร่องของเซ็นเซอร์หากระบุ "NG" สำหรับเซ็นเซอร์ตัว เดียวกันที่เชื่อมต่อกับ CH อื่น ถ้าให้ผลลัพธ์ NG ให้หยุดใช้เครื่องมือหรือ เซ็นเซอร์</li> </ul>

<u>11.2 ข้อความแสดงข้อผิดพลาดและการดำเนินการ</u>

รายละเอียดข้อความ	และการดำเนินการ
Battery level is low. Powering off	<ul> <li>เชื่อมต่อเครื่องมือเข้ากับแหล่งจ่ายไฟ AC หรือเปลี่ยนแบตเตอรี่ด้วย ก้อนใหม่ * ขนาดแบตเตอรี่อัลคาไลน์ AA (LR6) หรือแบตเตอรี่ AA Ni-MH ที่ชาร์จเต็ม x 6 ก้อน ดูที่ "วิธีการติดตั้งแบตเตอรี่ " (หน้า 31).</li> </ul>
Not having free space on the internal memory. Format the memory or delete unnecessary files.	<ul> <li>ตรวจสอบ พื้นที่ว่างบนหน่วยความจำภายในและจำนวนไฟล์ที่บันทึกไว้ จำนวนไฟล์สูงสุดที่สามารถบันทึกลงในหน่วยความจำภายในคือ: 3 สำหรับข้อมูลการวัดและ 8 สำหรับข้อมูลอื่น หาก พื้นที่ว่างไม่เพียงพอ ให้ลบไฟล์ที่ไม่จำเป็นออก ฟอร์แมตหน่วยความจำ ดูที่ "<i>เมื่อต้องการลบ</i> ให้ถ่ายโอน หรือจัดรูปแบบข้อมูลที่บันทึกไว้" (หน้า 82)</li> </ul>
Cannot read the setting file. The file may be damaged.	<ul> <li>ลองอีกครั้ง ถ้ายังคงไม่อ่านไฟล์การตั้งค่าอ</li> <li>* สงสัยได้ว่ามีปัญหากับ SD การ์ด หรือ KEW6315 หากตั้งค่าไว้ ไฟล์อยู่ใน SD การ์ด</li> <li>* อาจมีปัญหากับ KEW 6315 หากไฟล์การตั้งค่าอยู่ในหน่วยความจำ ภายใน ถ้าสงสัยว่ามีปัญหากับ KEW 6315 ให้หยุดใช้เครื่องมือ</li> </ul>
Available memory is low. Check the amount of free space in the SD card and internal memory. There is no available space in the storage area.	<ul> <li>ตรวจสอบ พื้นที่ว่างและจำนวนไฟล์ที่บันทึกไว้ใน SD การ์ดและ หน่วยความจำภายใน จำนวนไฟล์สูงสุดที่สามารถบันทึกลงใน หน่วยความจำภายในคือ: 3 สำหรับข้อมูลการวัดและ 8 สำหรับข้อมูล อื่น ถ้าพื้นที่ว่างไม่เพียงพอ ให้ลบไฟล์ที่ไม่จำเป็นออก ฟอร์แมตการ์ด หรือใช้การ์ดอันอื่น เมื่อใช้ SD การ์ดอื่น จะต้องฟอร์แมตการ์ดนี้ใน KEW6315 ไม่ใช่ใน PC ดูที่ "<i>เมื่อต้องการลบ ให้ถ่ายโอน หรือจัดรูปแบบ ข้อมูลที่บันทึกไว้"</i> (หน้า 82)</li> </ul>
Start time is set in the past. Check the recording start method.	<ul> <li>REC Start อยู่ที่ "Constant rec. / Time period rec." และเวลาที่ตั้ง</li> <li>ไว้สำหรับ REC End เป็นการตั้งค่าในอดีต ตรวจสอบและแก้ไขเวลา และวันที่ ดูที่ "(8)/ (9) การตั้งค่าสำหรับวิธีการบันทึก" (หน้า 45)</li> </ul>
Failed to start recording.	<ul> <li>ตรวจสอบ "Recording setting" ที่เมนู SET UP ดูที่ "5.4 การตั้งค่าการบันทึก" (หน้า 71)</li> <li>ลองอีกครั้ง หากยังไม่สามารถเริ่มเบันทึกได้ อาจมีปัญหากับ SD การ์ด หรือหน่วยความจำภายใน ตรวจสอบว่าปลายทางใดที่ตั้งค่าเป็น ปลายทางในการบันทึกข้อมูล หากปลายทางเป็นหน่วยความจำภายใน อาจมีปัญหากับ KEW6315 หยุดใช้เครื่องมือในกรณีนี้</li> </ul>
Cannot change the instrument settings during recording or in stand-by mode.	<ul> <li>ไม่อนุญาตให้เปลี่ยนการตั้งค่า ในระหว่างการบันทึก หากต้องการ เปลี่ยนการตั้งค่า ให้หยุดการบันทึก และยืนยันว่าข้อความ "Recording stopped." ปรากฏขึ้นแล้วหายไป</li> </ul>

รายละเอียดข้อความ	และการดำเนินการ
New sensor is detected. Recheck the basic setting for SET UP before measurements. Sensor connection is not correct. Check the connected sensor(s)	<ul> <li>เซ็นเซอร์ของแคลมป์ที่เชื่อมต่ออยู่ ไม่ใช่ตัวเดียวกันที่ใช้ระหว่างการ ทดสอบครั้งก่อน ปรับเปลี่ยนการตั้งค่าของเซ็นเซอร์แคลมป์โดยตรง จาก "Basic setting" หรือกดปุ่ม "Detect"</li> <li>อาจไม่ได้เชื่อมต่อเซ็นเซอร์กระแสไฟฟ้าที่เหมาะสมกับช่องการวัด ตรวจสอบการกำหนดค่าการเดินสายไฟและเซ็นเซอร์ที่เชื่อมต่อ</li> </ul>
Out of SD card space. Recording will be stopped.	<ul> <li>ก่อนอื่น หยุดบันทึก ยืนยันว่าข้อความ "Recording stopped." ปรากฏขึ้น แล้วหายไป สำรองไฟล์ข้อมูลไปยัง PC หรือสื่ออื่นๆ จากนั้นลบไฟล์หรือฟอร์แมต เมื่อใช้ SD การ์ดอื่น จะต้องฟอร์แมต การ์ดนี้ใน KEW6315 ไม่ใช่บน PC</li> </ul>
	ดูที่ "เมื่อต้องการลบ ให้ถ่ายโอน หรือจัดรูปแบบข้อมูลที่บันทึกไว้" (หน้า 82)
Out of internal memory space. Recording will be stopped.	<ul> <li>ก่อนอื่น หยุดบันทึก ยืนยันว่าข้อความ "Recording stopped." ปรากฏขึ้น แล้วหายไป สำรองไฟล์ข้อมูลไปยัง PC หรือ SD การ์ดอื่นๆ จากนั้นลบไฟล์หรือฟอร์แมต ดูที่ "<i>เมื่อต้องการลบ ให้ถ่ายโอน หรือ</i> อัดรูปแบบข้อมูลที่บันทึกไว้" (หน้า 82)</li> </ul>

ผู้จัดจำหน่าย

Kyoritsu ขอสงวนสิทธิ์ในการเปลี่ยนแปลงข้อมูลจำเพาะหรือการออกแบบที่ระบุไว้ในคู่มือเล่มนี้โดยไม่ต้อง แจ้งให้ทราบล่วงหน้าและไม่มีข้อผูกมัด



### **KYORITSU ELECTRICAL INSTRUMENTS WORKS, LTD.**

2-5-20,Nakane, Meguro-ku, Tokyo, 152-0031 Japan Phone: +81-3-3723-0131 Fax: +81-3-3723-0152 Factory: Ehime,Japan

www.kew-ltd.co.jp