PANDUAN PETUNJUK

METER DAYA DIGITAL

KEW 6305

KYORITSU ELECTRICAL INSTRUMENTS WORKS, LTD.

Daftar Isi

Prosedur pembongkaran	4
Peringatan keamanan	6
1. Gambaran Umum Instrumen	11
1.1 Gambaran Umum Fungsional	11
1.2 Fitur	
1.3 Prosedur Pengukuran	
1.4 Kerangka konsep pengukuran demand maksimal	
2. Tata Letak Instrumen	
2.1 Tampilan depan	
2.2 Indikasi LCD	
2.3 Konektor	
2.4 Sisi samping	21
3. Memulai	
3.1 Catu Daya	
3.2 Koneksi kabel uji tegangan dan sensor penjepit	
3.3 Memulai KEW 6305	
4. Pengaturan	
4.1 Daftar item pengaturan	
4.2 Prosedur pengaturan dari setiap item pengaturan	
5. Konfigurasi pengkabelan	57
5.1 Pemeriksaan Awal yang Penting	57
5.2 Konfigurasi kabel dasar	
5.3 Menggunakan VT/CT tambahan (tidak disertakan bersama instrumen)	60
5.4 Pemeriksaan kabel	61
6. Pengukuran nilai sesaat	
6.1 Layar tampilan Konfigurasi Pengkabelan	
6.2 Memilih/mengubah layar tampilan	70
6.3 Menyesuaikan tampilan	73
6.4 Menyimpan data (nilai sesaat)	75
6.5 Rentang dan Indikasi di atas rentang	
7. Pengukuran nilai integrasi	
7-1 Inisiasi survei	
7.2 Penutupan Survei	
7.3 Mengatur ulang nilai integrasi	
7-4 Mengubah tampilan	

7.5 Menyimpan data	
7.6 Digit yang Ditampilkan/Indikasi di atas rentang	
8. Pengukuran nilai demand	
8.1 Pengukuran demand	
8-2 Mengubah item yang ditampilkan	
8-3 Inisiasi survei	
8-4 Penutupan survei	
8-5 Mengatur ulang nilai demand	
8-6 Menyimpan data	
8-7 Digit yang Ditampilkan/Indikasi di atas rentang	
9. Kartu SD/Memori internal	
9.1 Instrumen dan Kartu SD/Memori internal	
9.2 Memasukkan/melepaskan kartu SD	114
10. Fungsi komunikasi/perangkat lunak antarmuka	115
11. Fungsi lainnya	116
11.1 Mendapatkan daya dari jalur terukur	
12. Pemecahan Masalah	119
13. Spesifikasi	
13.1 Spesifikasi umum	
13.2 Pengukuran instrumen (Rentang 🛛)	
13.3 Pengukuran Integrasi (Rentang <mark>Wh</mark>)	
13.4 Pengukuran demand (Rentang <mark>DEMAND</mark>)	
13.5 Spesifikasi lainnya	
13.6 Spesifikasi Sensor penjepit	

Prosedur pembongkaran

Terima kasih telah membeli Meter Daya Digital **KEW 6305** kami. Silakan periksa isi dan instrumen sebelum penggunaan.

Item yang tercantum di bawah ini termasuk dalam set standar:

1	Unit utama	KEW6305: 1 unit
		MODEL7141B:1 set
2	Kabel uji tegangan	(MERAH, HIJAU, BIRU, HITAM: 1 pce.
		untuk masing-masing)
З	Kabel daya	MODEL7170: 1 pce.
4	Kabel USB	MODEL7148: 1 pce.
5	Panduan cepat	1 pce.
6	CD-ROM	1 pce.
7	Baterai	Baterai Alkaline ukuran AA (LR6): 6pcs
8	Kartu SD	1 pce.
9	Casing pembawa	MODEL9125: 1 pce.
Kompo	onen opsional	
10	Sensor penjepit	Tergantung model yang dibeli

10	Sensor penjepit	Tergantung model yang dibeli
11	Panduan petunjuk untuk Sensor penjepit	1 рсе.
12	Kartu SD	2GB
13	Casing pembawa untuk Unit utama	MODEL9132
14	Adaptor catu daya	MODEL8312

1. Unit utama 2. Kabel uji tegangan 3. Kabel daya

4. Kabel USB

5. Panduan cepat 6.CD-ROM

7. Baterai

8. Kartu SD

9. Casing pembawa

10. Sensor penjepit

(tergantung model yang dibeli)

11. Panduan petunjuk untuk Sensor penjepit

Tipe 50A (Φ24mm/Φ75mm)	M-8128/KEW 8135
Tipe 100Α (<i>Φ</i> 24mm)	M-8127
Tipe 200A (ϕ 40mm)	M-8126
Tipe 500A (${\it \Phi}$ 40mm)	M-8125
Tipe 1000A (<i>Ф</i> 68/110mm)	M-8124/KEW 8130
Tipe 3000A (<i>Ф</i> 150mm)	M-8129

13. Casing pembawa untuk unit utama (dengan magnet)

14. Adaptor catu daya

• Penyimpanan

Simpan item seperti yang ditunjukkan di bawah ini setelah digunakan.

• Jika salah satu item yang tercantum di atas rusak atau hilang atau jika cetakan tidak jelas, silakan hubungi distributor KYORITSU setempat Anda.

• Peringatan keamanan

Instrumen ini dirancang, diproduksi, dan diuji menurut IEC 61010-1: Persyaratan keselamatan untuk alat Pengukur Elektronik, dan dikirimkan dalam kondisi terbaik setelah melewati pengujian kontrol kualitas.

Panduan petunjuk ini berisi peringatan dan prosedur keselamatan yang harus dipatuhi oleh pengguna untuk memastikan pengoperasian instrumen yang aman dan menjaganya dalam kondisi aman. Oleh karena itu, bacalah petunjuk pengoperasian ini sebelum menggunakan instrumen.

- Untuk tentang Panduan petunjuk -
- Bacalah dan pahami petunjuk yang terdapat dalam panduan ini sebelum menggunakan instrumen.
- Simpan panduan ini agar dapat dirujuk dengan cepat kapan pun diperlukan.
- Instrumen ini hanya boleh digunakan sesuai dengan penggunaan yang dimaksudkan.
- Pahami dan ikuti semua petunjuk keamanan yang terdapat dalam panduan ini.
- Baca Panduan cepat terlampir setelah membaca panduan petunjuk ini.
- Mengenai penggunaan Sensor penjepit, lihat panduan petunjuk yang disertakan dengan sensor.

Petunjuk di atas harus dipatuhi. Kegagalan mengikuti petunjuk di atas dapat menyebabkan cedera, kerusakan instrumen, dan/atau kerusakan pada peralatan yang diuji. Kyoritsu sama sekali tidak bertanggung jawab atas segala kerusakan yang diakibatkan oleh instrumen yang bertentangan dengan catatan peringatan ini.

Simbol Sim

\wedge	BAHAYA	: mengacu pada kondisi dan tindakan yang mungkin menyebabkan cedera
		serius atau fatal.
\wedge	PERINGATAN	: mengacu pada kondisi dan tindakan yang dapat menyebabkan cedera serius
		atau fatal.
\wedge	PERHATIAN	: mengacu pada kondisi dan tindakan yang dapat menyebabkan cedera atau
		kerusakan instrumen.

O Kategori Pengukuran

Untuk memastikan pengoperasian instrumen pengukur yang aman, IEC 61010 menetapkan standar keselamatan untuk berbagai lingkungan listrik, yang dikategorikan sebagai O hingga CAT IV, dan disebut kategori pengukuran. Kategori dengan nomor yang lebih tinggi sesuai dengan lingkungan kelistrikan dengan energi sementara yang lebih besar, sehingga instrumen pengukur yang dirancang untuk lingkungan CAT III dapat menahan energi sementara yang lebih besar daripada instrumen yang dirancang untuk CAT II.

- 0 : Sirkuit yang tidak terhubung langsung ke catu daya utama.
- CAT II : Sirkuit listrik peralatan yang dihubungkan ke stopkontak listrik AC dengan kabel listrik.
- CAT III : Sirkuit listrik primer peralatan yang dihubungkan langsung ke panel distribusi, dan pengumpan dari panel distribusi ke stopkontak.
- CAT IV : Sirkuit dari layanan turun ke pintu masuk layanan, dan ke pengukur daya dan perangkat perlindungan arus berlebih primer (panel distribusi).

\land ВАНАҮА

- Pastikan pengoperasian yang benar pada sumber yang diketahui sebelum digunakan.
- Pastikan pengoperasian yang benar pada sumber yang diketahui sebelum mengambil tindakan berdasarkan indikasi instrumen.
- Jangan pernah melakukan pengukuran pada sirkuit di mana potensi listrik melebihi 600VAC.
- Jangan mencoba melakukan pengukuran saat ada gas mudah terbakar. Jika tidak, penggunaan instrumen dapat menimbulkan percikan api, yang dapat mengakibatkan ledakan.
- Jangan pernah mencoba menggunakan instrumen jika permukaannya atau tangan Anda basah.

- Pengukuran -

- Jangan melebihi masukan maksimum yang diperbolehkan pada rentang pengukuran apa pun.
- Jangan pernah membuka penutup Baterai selama pengukuran.
- Pastikan pengoperasian yang benar pada sumber yang diketahui sebelum menggunakan atau mengambil tindakan sebagai akibat dari indikasi instrumen.

- Baterai -

- Jangan mencoba mengganti baterai selama pengukuran.
- Merek dan tipe baterai yang akan digunakan harus selaras.

- Kabel daya -

- Hubungkan steker listrik Kabel daya ke stopkontak listrik.
- Hanya gunakan kabel daya yang disertakan bersama instrumen ini.

- Konektor catu daya -

• Jangan sentuh Konektor catu daya meskipun diinsulasi saat instrumen dioperasikan dengan baterai.

- Kabel uji tegangan -

- Hanya gunakan kabel yang disertakan dengan instrumen ini.
- Pastikan bahwa nilai tegangan terukur pada kabel uji tidak terlampaui.
- Jangan hubungkan Kabel uji tegangan kecuali diperlukan untuk mengukur parameter yang diinginkan.
- Hubungkan Kabel uji tegangan ke instrumen terlebih dahulu, baru kemudian hubungkan ke sirkuit yang sedang diuji.
- Jangan pernah melepaskan Kabel uji tegangan saat instrumen sedang digunakan.
- Hubungkan ke sisi hilir pemutus arus karena kapasitas arus di sisi hulu besar.
- Jangan sentuh dua jalur yang sedang diuji dengan ujung logam pada kabel uji.
- Jangan pernah menyentuh ujung logam kabel uji.
- Pastikan jari dan tangan Anda berada di belakang pelindung jari protektif selama pengukuran.

- Sensor penjepit -

- Hanya gunakan sensor penjepit khusus untuk instrumen ini.
- Pastikan nilai arus terukur kabel uji tidak terlampaui.
- Jangan menghubungkan Sensor penjepit kecuali diperlukan untuk mengukur parameter yang diinginkan.
- Hubungkan sensor ke instrumen terlebih dahulu, baru kemudian hubungkan ke sirkuit yang sedang diuji.
- Jangan pernah melepaskan sensor saat instrumen sedang digunakan.
- Hubungkan ke sisi hilir pemutus arus karena kapasitas arus di sisi hulu besar.
- Jangan sentuh dua jalur yang sedang diuji dengan ujung logam pada kabel uji.
- Pastikan jari dan tangan Anda di belakang penghalang selama pengukuran.

- Koneksi -

- Pastikan instrumen dalam keadaan mati, lalu hubungkan Kabel daya.
- Hubungkan Kabel daya dengan kuat, Kabel uji tegangan, dan Sensor penjepit ke instrumen terlebih dahulu.
- Jangan pernah mencoba melakukan pengukuran apa pun jika ada kondisi abnormal, seperti penutup rusak atau bagian logam terbuka pada Instrumen, Kabel uji tegangan, Kabel daya, dan Sensor penjepit.

- Pengukuran –

• Pastikan Penutup terminal masukan arus, penutup konektor USB, dan penutup konektor kartu SD ditutup saat tidak sedang digunakan selama pengukuran.

- Tidak digunakan untuk waktu yang lama -

• Cabut Kabel daya dari stopkontak jika instrumen tidak akan digunakan dalam waktu lama.

- Perbaikan/Kalibrasi -

• Jangan memasang suku cadang pengganti atau melakukan modifikasi apa pun pada instrumen. Kembalikan instrumen ke distributor KYORITSU setempat Anda untuk diperbaiki atau dikalibrasi ulang jika ada dugaan kesalahan pengoperasian.

- Baterai -

- Jangan mencoba mengganti baterai jika permukaan instrumen basah.
- Pastikan Kabel daya, Kabel uji tegangan, dan Sensor penjepit telah dilepas dari instrumen, dan instrumen dimatikan saat membuka penutup Baterai untuk penggantian baterai.
- Jangan mencampur baterai baru dan lama.
- Pasang baterai dengan polaritas yang benar seperti yang ditandai di dalam area kompartemen Baterai.

- Kabel daya -

- Jangan gunakan kabel yang rusak.
- Jangan meletakkan benda berat, menginjak atau menjepit kabelnya, apalagi menyentuh bahan yang panas.
- Saat mencabut kabel dari stopkontak, lakukan dengan mencabut steker terlebih dahulu dan bukan dengan menarik Kabel daya.

- Kabel uji tegangan -

•Hentikan penggunaan uji timbal jika jaket luar rusak dan logam bagian dalam atau jaket warna terlihat.

- Mengukur gejala yang abnormal -

• Jika instrumen mulai mengeluarkan asap, menjadi terlalu panas, atau mengeluarkan bau yang tidak biasa, segera matikan dan cabut kabel listrik dari stopkontak. Matikan juga aliran listrik ke objek yang sedang diuji. Jika ada anomali seperti yang disebutkan di atas, hubungi distributor KYORITSU setempat Anda.

- Penggunaan gigi pelindung -

• Gunakan sarung tangan, sepatu bot, atau penutup kepala berinsulasi pada saat pengukuran untuk memastikan keselamatan pengguna.

\land PERHATIAN

- Perhatian harus diberikan karena konduktor yang diuji mungkin panas.
- Jangan pernah memberikan arus atau tegangan melebihi masukan maksimum yang diperbolehkan untuk instrumen dalam waktu lama.
- Jangan memberikan arus atau tegangan pada kabel uji tegangan atau Sensor penjepit saat instrumen mati.
- Jangan gunakan instrumen di tempat yang berdebu atau terkena cipratan air.
- Jangan gunakan instrumen di saat terjadi badai listrik yang kuat atau di sekitar benda berenergi.
- Jangan pernah memberikan getaran yang kuat atau menjatuhkan guncangan.
- Saat menggunakan kartu SD, jangan mengganti atau melepas kartu tersebut. (Simbol D) akan berkedip saat mengakses kartu SD.) Jika tidak, data yang disimpan dalam kartu mungkin hilang atau instrumen mungkin rusak.

- Sensor penjepit -

• Jangan menekuk atau menarik kabel Sensor penjepit.

- Perawatan setelah penggunaan -

- Matikan instrumen dan lepaskan Kabel daya, Kabel uji tegangan, dan Sensor penjepit dari instrumen.
- Keluarkan baterai jika instrumen akan disimpan dan tidak akan digunakan dalam waktu lama.
- Lepaskan kartu SD saat membawa instrumen.
- Jangan pernah memberikan getaran yang kuat atau guncangan saat membawa instrumen.
- Jangan biarkan instrumen terkena sinar matahari langsung, suhu tinggi, kelembapan, atau embun.
- Gunakan kain lembap dengan detergen netral atau air untuk membersihkan instrumen. Jangan gunakan bahan abrasif atau pelarut.
- Jangan simpan instrumen jika dalam keadaan basah.

Baca dengan cermat dan ikuti instruksinya: A BAHAYA, PERINGATAN, A PERHATIAN, dan CATATAN () digambarkan di setiap bagian.

Simbol berikut digunakan dalam panduan ini:

\wedge	Pengguna wajib mengacu pada penjelasan dalam panduan petunjuk.		
	Instrumen dengan insulasi ganda atau yang diperkuat		
~	AC		
4	(Fungsional) Terminal Earth		
X	Instrumen ini memenuhi persyaratan penandaan yang ditentukan dalam WEEE Directive (2002/96/EC). Simbol ini mengindikasikan pengumpulan terpisah untuk peralatan listrik dan elektronik.		

1. Gambaran Umum Instrumen

1.1 Gambaran Umum Fungsional

Fungsional

Lihat "Data yang Disimpan (Bagian 10)" untuk detail selengkapnya.

1.2 Fitur

Ini adalah Meter Penjepit Daya digital yang dapat digunakan untuk berbagai sistem pengkabelan. Data terukur dapat disimpan di memori internal atau kartu SD dan dapat dikirim ke PC melalui koneksi USB atau dengan menggunakan pembaca kartu SD.

Konstruksi Keselamatan

Dirancang untuk memenuhi standar keamanan internasional IEC 61010-1 CAT III 600V.

Konfigurasi kabel

KEW6305 mendukung: 2 kabel fase tunggal, 3 kabel fase tunggal, 3 kabel tiga fase, 4 kabel tiga fase.

Pengukuran dan penghitungan

KEW6305 mengukur tegangan (RMS), arus (RMS), daya aktif, frekuensi dan menghitung daya reaktif/nyata, faktor daya, arus netral, dan energi aktif/reaktif/nyata.

Pengukuran demand

Konsumsi listrik dapat dipantau dengan mudah agar tidak melebihi target nilai kebutuhan maksimum.

Menyimpan data

KEW 6305 dilengkapi dengan fungsi pencatatan dengan interval perekaman yang telah ditentukan sebelumnya. Data dapat disimpan dengan operasi manual atau pada waktu & tanggal yang telah ditentukan sebelumnya.

Sistem catu daya ganda

KEW 6305 beroperasi dengan catu daya AC atau dengan baterai. Baterai sel kering (alkaline) dan baterai isi ulang (Ni-MH) dapat digunakan. Jika terjadi gangguan, saat beroperasi dengan catu daya AC, daya ke instrumen secara otomatis dipulihkan oleh baterai pada instrumen.

Tampilan besar

Hingga 3 item terukur dapat ditampilkan di layar besar secara bersamaan.

Desain ringan & ringkas

Jenis sensor penjepit, desain ringkas dan ringan

Aplikasi

Data di memori internal dan kartu SD dapat dikirim ke PC menggunakan koneksi USB atau slot SD. Aplikasi perangkat lunak PC yang disertakan memudahkan pengaturan instrumen dan analisis data yang disimpan dari PC.

1.3 Prosedur Pengukuran

• Langkah pengukuran

1.4 Kerangka konsep pengukuran demand maksimal

Di beberapa negara, konsumen listrik dalam jumlah besar biasanya memiliki kontrak permintaan maksimum dengan perusahaan listrik. Kontrak tersebut berbeda dari satu negara ke negara lain. Berikut penjelasan mengenai kontrak permintaan maksimum khas Jepang.

• Kontrak Permintaan Maksimum

Dalam kontrak tersebut, tarif listrik (yaitu untuk unit kWhr) didasarkan pada permintaan listrik maksimum konsumen. Permintaan maksimum adalah daya rata-rata maksimum yang dicatat dalam interval 30 menit.

Hal ini diukur dengan meteran permintaan maksimum milik perusahaan listrik. Anggaplah sebuah perusahaan listrik mempunyai tarif yang berlaku sebagai berikut.

\$2 per unit KWh untuk permintaan maksimum yang tercatat sebesar 300KW selama setahun

\$4 per unit KWh untuk permintaan maksimum yang tercatat sebesar 500KW selama setahun

\$5 per unit KWh untuk permintaan maksimum yang tercatat sebesar 600KW selama setahun

Dengan asumsi bahwa konsumen berada pada tarif 500kW/tahun (yaitu \$4), dan permintaan maksimum yang tercatat pada hari tertentu (katakanlah 15 Januari) adalah 600kW. Maka tarif baru yang berlaku mulai tanggal 1 Februari dan seterusnya adalah tarif 600 kW/tahun (yaitu \$5) untuk 365 hari berikutnya. Jika setahun kemudian, pada tanggal 1 Februari, permintaan maksimum yang tercatat adalah 300 kW, tarif baru yang berlaku akan diubah menjadi tarif 300 kW/tahun (yaitu \$2) untuk 365 hari berikutnya. Namun, jika selama periode ini, permintaan maksimum naik lagi, dan katakanlah 600kW tercatat pada tanggal 15 Maret, tarif yang berlaku berubah lagi menjadi tarif 600 kW/tahun (yaitu \$5) untuk 365 hari berikutnya.

• Manfaat pengendalian permintaan maksimum

Oleh karena itu, penting bagi konsumen yang memiliki kontrak tersebut untuk memantau dengan cermat fluktuasi permintaan listrik mereka untuk memastikan bahwa batas permintaan maksimal mereka tidak terlampaui dan dengan demikian dikenakan tarif yang lebih tinggi. Pengendalian Permintaan Maksimum lebih efektif di negara-negara dengan tarif listrik yang lebih tinggi.

• Status kontrak permintaan maksimum

Di masa lalu, di Jepang, hanya konsumen yang pasokan listriknya mencapai 600kW atau lebih yang biasanya menandatangani kontrak permintaan. Namun, saat ini perusahaan listrik memasang pengukur permintaan maksimum di semua konsumen yang pasokannya mencapai 70kW atau lebih.

• Batasan pengukuran Demand Maksimum

N.B. Pembacaan dari meter permintaan maksimum perusahaan listrik dan dari 6300 tidak akan cocok sepenuhnya karena perbedaan jeda waktu yang jelas pada awal periode integrasi (misalnya 30 menit) saat permintaan maksimum diambil.

2. Tata Letak Instrumen

2.1 Tampilan depan

Tampilan (LCD)/Tombol

Fungsi tombol

Sakelar fungsi:

Menyalakan KEW 6305. (Putar ke posisi apa pun selain "OFF".)

Tombol		Detail		
START /STOP	Tombol START/STOP	Memulai/menghentikan integrasi dan pengukuran demand.		
	Tombol Lampu Latar Belakang	Mengaktifkan/menonaktifkan lampu latar belakang LCD.		
	Tombol <mark>Kursor</mark>	Pada layar pengukuran: beralih layar, dan pada layar pengaturan: memilih item pengaturan atau mengubah nilai atau digit		
ENTER	Tombol <mark>ENTER</mark>	Mengonfirmasi entri		
ESC	Tombol <mark>ESC</mark>	* Membatalkan perubahan pengaturan, * Menghapus integrasi/nilai demand.		
DATA HOLD	Tombol DATA HOLD	* Penangguhan data * Kunci tombol Menekan lama (2 detik atau lebih) akan mengunci Tombol dan menekan lama lagi (2 detik atau lebih) akan membuka Kunci yang terkunci.		
W SAVE	Tombol SAVE	Menyimpan nilai sesaat yang diukur.		

2.2 Indikasi LCD

< Semua simbol yang akan ditampilkan pada LCD >

< Simbol menunjukkan fungsi atau status selama pengukuran >

Simbol	Fungsi dan status selama pengukuran	
Оп	Menyala ketika tombol terkunci.	
Vol	Menyala ketika tegangan melebihi kondisi tertentu.	
Aol	Menyala ketika arus melebihi kondisi tertentu.	
-Œ	Menyala ketika instrumen bekerja dengan catu daya AC.	
•	Menyala ketika instrumen bekerja dengan baterai.	
E	Menyala ketika fungsi penyimpanan data diaktifkan.	
SET	Menyala ketika memilih Rentang SET UF.	
WIRING CHECK	Menyala ketika memilih Rentang WIRING CHECK.	
W	Berkedip ketika nilai sesaat ditampilkan pada LCD.	
Wh	Berkedip ketika nilai integrasi ditampilkan pada LCD.	
DEMAND	Berkedip ketika nilai demand ditampilkan pada LCD.	
FULL	Ketika kapasitas kartu SD atau memori internal terlampaui.	
RECALL	Menyala ketika memilih Rentang DATA CHECK.	
SD	Menyala ketika data disimpan di kartu SD, dan berkedip saat menyimpan data.	
•	Menyala ketika kabel USB terhubung ke terminal, dan berkedip selama komunikasi data.	
8	Menyala ketika mengatur komunikasi Bluetooth.	
	Menyala ketika data disimpan di memori internal, dan berkedip saat mengakses memori.	
VT	Menyala ketika rasio VT diatur ke selain "1".	
СТ	Menyala ketika rasio CT diatur ke selain "1".	

2.3 Konektor

Deskripsi

Konfigurasi kabel		Terminal Masukan Tegangan	Terminal Masukan Arus
2 kabel fase tunggal	1P2W(1ch)	VN, 1	A1
2 kabel fase tunggal (2ch)	1P2W(2ch)	VN, 1	A1, 2
2 kabel fase tunggal (3ch)	1P2W(3ch)	VN, 1	A1, 2, 3
3 kabel fase tunggal	1P3W	VN, 1, 2	A1, 2
3 kabel tiga fase	3P3W	VN, 1, 2	A1, 2
3 kabel tiga fase 3A	3P3W3A	V1, 2, 3	A1, 2, 3
4 kabel tiga fase	3P4W	VN, 1, 2, 3	A1, 2, 3

2.4 Sisi samping

Deskripsi

< Ketika Penutup konektor ditutup. >

< Ketika Penutup konektor dibuka. >

3. Memulai

3.1 Catu Daya

3.1.1 Baterai

KEW 6305 beroperasi dengan catu daya AC atau baterai.

Mampu melakukan pengukuran jika listrik AC terputus, daya ke instrumen secara otomatis dipulihkan oleh baterai yang dipasang di instrumen. Baterai sel kering (alkaline) dan baterai isi ulang (Ni-MH) dapat digunakan.

* Baterai sel kering (alkaline) disertakan sebagai aksesori.

\land ВАНАУА

- Jangan pernah membuka Penutup Baterai selama pengukuran.
- Merek dan tipe baterai yang akan digunakan harus selaras.
- Jangan sentuh Konektor catu daya meskipun diinsulasi saat instrumen dioperasikan dengan baterai.

\land PERINGATAN

• Pastikan Kabel daya, Kabel uji tegangan, dan Sensor penjepit telah dilepas dari instrumen, dan instrumen dimatikan saat membuka penutup Baterai untuk penggantian baterai.

- Jangan mencampur baterai baru dan lama.
- Pasang baterai dengan polaritas yang benar seperti yang ditandai di dalam area kompartemen Baterai.

Baterai tidak ada dalam instrumen pada saat pembelian. Silakan masukkan baterai yang disertakan sebelum mulai menggunakan instrumen. Daya baterai dikonsumsi meskipun instrumen dimatikan. Keluarkan semua baterai jika instrumen akan disimpan dan tidak akan digunakan dalam waktu lama. Jika instrumen ditenagai oleh catu daya AC, instrumen tidak beroperasi dengan baterai.

<u>Jika pasokan AC terputus dan baterai belum dimasukkan,</u> instrumen akan mati dan semua data mungkin hilang.

Indikator Catu Daya

Simbol perubahan catu daya sebagai berikut.

Kondisi baterai

Simbol baterai bervariasi sesuai dengan kondisi baterai sebagai berikut.

	Waktu operasi baterai			
() ()	Sekitar 15 jam, dengan baterai alkaline baru. * Ini adalah waktu referensi dan akan dipersingkat jika menggunakan lampu latar belakang atau fungsi Bluetooth.			
(berkedip)	Baterai habis. (Akurasi pembacaan tidak dapat dijamin.) Tergantung pada keadaan pengukuran, instrumen beroperasi sebagai berikut secara otomatis. * sambil menyimpan data nilai sesaat (File dibuka.) -> Tutup file yang terbuka. (Data akan disimpan.) * saat mengukur nilai integrasi/demand -> Pengukuran berbenti paksa (Data akan disimpan.)			

Memasukkan baterai sel kering

Lepaskan dua sekrup pengencang Penutup Baterai dan lepaskan Penutup.

Keluarkan semua baterai.

12345

Masukkan baterai (LR6: baterai alkaline ukuran AA) dalam polaritas yang benar.

Pasang Penutup Baterai dan kencangkan kedua sekrup.

Hubungkan Kabel Daya AC dan hidupkan instrumen.

3.1.2 Catu Daya AC

Periksa hal berikut sebelum menyambungkan Kabel daya.

\land ванауа

- Hanya gunakan kabel daya yang disertakan bersama instrumen ini.
- Hubungkan steker listrik Kabel daya ke stopkontak listrik. Tegangan suplai listrik tidak boleh melebihi 240 V AC. (Tegangan terukur maksimum dari Kabel daya yang disertakan MODEL7169: 125 V AC)

\land PERINGATAN

- Pastikan instrumen dalam keadaan mati, lalu hubungkan Kabel daya.
- Hubungkan Kabel daya ke instrumen terlebih dahulu. Kabel harus dimasukkan dengan kuat.
- Jangan pernah mencoba melakukan pengukuran jika terdapat kondisi tidak normal seperti kondisi abnormal, seperti Penutup rusak dan bagian logam terbuka.
- Bila instrumen tidak digunakan, cabut Kabel daya dari stopkontak.
- Ketika mencabut kabel dari stopkontak, lakukan dengan mencabut stekernya terlebih dahulu dan bukan dengan menarik kabelnya.

Koneksi kabel daya

Ikuti prosedur di bawah ini dan hubungkan Kabel daya.

- Pastikan instrumen dalam keadaan mati.
- 2 Hubungkan Kabel daya ke Konektor daya pada instrumen.

3 Hubungkan steker Kabel daya ke stopkontak listrik.

Peringkat catu daya

Peringkat ca<u>tu daya adalah sebag</u>ai berikut.

Tegangan suplai terukur	•	100 hingga 240 V AC (±10%)
Frekuensi catu daya terukur	•	45 hingga 65 Hz
Konsumsi daya maksimum	•	10 VA maksimum

3.2 Koneksi kabel uji tegangan dan sensor penjepit

Periksa hal berikut sebelum menghubungkan kabel uji dan sensor.

\land ванауа

- Hanya gunakan Kabel uji tegangan yang disertakan dengan alat ini.
- Gunakan Sensor penjepit khusus untuk instrumen ini dan pastikan bahwa nilai arus terukur dari Sensor penjepit tidak terlampaui.
- Jangan hubungkan semua Kabel uji tegangan atau Sensor penjepit kecuali diperlukan untuk mengukur parameter yang diinginkan.
- Hubungkan kabel uji dan sensor ke instrumen terlebih dahulu, baru kemudian hubungkan ke sirkuit yang sedang diuji.
- Jangan pernah melepaskan Kabel uji tegangan dan sensor saat instrumen sedang digunakan.
- Pastikan jari dan tangan Anda berada di belakang pelindung jari protektif selama pengukuran.

\land PERINGATAN

- Pastikan instrumen dalam keadaan mati, lalu hubungkan Kabel daya.
- Hubungkan Kabel daya ke instrumen terlebih dahulu. Kabel harus dimasukkan dengan kuat.
- Jangan pernah mencoba melakukan pengukuran jika terdapat kondisi tidak normal seperti Penutup rusak dan bagian logam terbuka.
- Hentikan penggunaan uji timbal jika jaket luar rusak dan logam bagian dalam atau jaket warna terlihat.

Koneksi kabel uji tegangan dan Sensor penjepit

Ikuti prosedur di bawah ini dan hubungkan Kabel uji tegangan dan Sensor penjepit.

- Pastikan instrumen dalam keadaan mati.
 Hubungkan Kabel uji tegangan yang sesu
 Hubungkan Sensor peniepit uang sesuai
 - Hubungkan Kabel uji tegangan yang sesuai ke Terminal masukan tegangan pada instrumen.

Hubungkan Sensor penjepit yang sesuai ke Terminal masukan arus pada instrumen. Cocokkan arah tanda panah yang ditunjukkan pada terminal keluaran sensor penjepit dan tanda pada Terminal masukan arus pada instrumen.

Jumlah Kabel uji tegangan dan Sensor penjepit yang akan digunakan akan berbeda tergantung pada konfigurasi kabel yang sedang diuji. Untuk detail lebih lanjut, lihat "**5.2 Konfigurasi Kabel Dasar**" dalam panduan ini.

Pelindung jari protektif dan Penghalang:

Ini adalah bagian yang memberikan perlindungan terhadap sengatan listrik dan memastikan jarak udara dan rambat minimum yang diperlukan. Ketika instrumen dan uji timbal digabungkan dan digunakan bersama-sama, kategori mana pun yang lebih rendah akan diterapkan.

3.3 Memulai KEW 6305

3.3.1 Layar Pengaktifan

KEW 6305 dimulai saat memutar dan mengatur tombol Fungsi ke posisi mana pun selain posisi "OFF". Kemudian, layar Pengaktifan akan ditampilkan.

Semua segmen akan ditampilkan selama sekitar 1 detik, dan kemudian info MODEL/VERSI akan ditampilkan selama sekitar 1 detik.

Semua segmen akan ditampilkan

Info nama Model/Versi.

2 Layar yang sesuai dengan rentang yang dipilih akan ditampilkan.

3.3.2 Pesan kesalahan

Instrumen ini secara otomatis memeriksa sirkuit internal segera setelah dihidupkan.

Jika diduga terjadi kegagalan pada sirkuit internal, layar kesalahan di bawah ini akan ditampilkan selama sekitar 2 detik sebelum layar pengaktifan.

Jika layar berikut ini muncul, segera hentikan penggunaan instrumen dan lihat "**Bagian 12: Ketika** ada dugaan cacat atau kerusakan" dalam panduan ini.

Pengukuran dapat dilakukan jika layar kesalahan muncul saat instrumen dihidupkan. Namun, keakuratan nilai terukur mungkin di luar spesifikasi.

4. Pengaturan

4.1 Daftar item pengaturan

Bagian ini membahas pengaturan untuk pengukuran dan penyimpanan data.

No. pengaturan/item Simbol Detail 1P2W(1ch)/1P2W(2ch)/1P2W(3ch) Sistem 01 008 /1P3W/3P3W/3P3W3A/3P4W pengkabelan 88Cv 02 150/300/600V Rentang tegangan 03 Sensor penjepit 8 Tipe 50/100/200/500/1000/3000A 03 Rentang Sensor 50A 1/5/10/25/50A/AUTO 2/10/20/50/100A/AUTO 100A 04 Rentang arus 4/20/40/100/200A/AUTO 200A 500A 10/50/100/250/500A/AUTO 1000A 20/100/200/500/1000A/AUTO 300/1000/3000A 3000A 05 Rasio VT VT 0,01 - 9999,99 (dapat diatur dengan 0,01) 06 Rasio CT 0,01 - 9999,99 (dapat diatur dengan 0,01) CT 07 Tanggal dan waktu \heartsuit Tahun:Bulan:Hari:Jam:Menit:Detik 08 Buzzer đ-ON / OFF Wh DEMAND + INT 1/2/5/10/15/20/30 dtk./ 09 Interval rekaman 1/2/5/10/15/20/30 mnt./1 jam ON: Menentukan waktu mulai/berhenti Rekam periode waktu Wh DEMAND ් ත්මු 10 tertentu atau rekam (berulang kali direkam) tanpa akhir OFF: Merekam data secara kontinu Pengaturan periode Wh DEMAND Waktu mulai dan berhenti waktu + (START) hh:mm:ss **11***1 (Tahun:Bulan:Hari:Jam:Menit:Detik) Pengaturan waktu

Atur tombol Fungsi ke rentang **SET UP** sebagai berikut.

12*1	Pengaturan periode waktu Pengaturan tanggal	Wh DEMAND + START STOP YY:MM:DD	Tahun:Bulan:Hari:Jam:Menit:Detik
13*²	Awal pengukuran berkelanjutan	Wh DEMAND + (START) YY:MM:DD	Tahun:Bulan:Hari:Jam:Menit:Detik
14 ^{*2}	Akhir pengukuran berkelanjutan	Wh DEMAND + Stop YY:MM:DD	Tahun:Bulan:Hari:Jam:Menit:Detik
15	Target demand	(<u>DEMAND</u>) + Target	Nilai: 0,1 - 999,9 Unit: W/kW/MW/GW/VA/kVA/MVA/GVA
16	Siklus pengukuran demand	(DEMAND) + (INT)	NO/ 10/ 15/ 30 menit * Pengukuran demand tidak akan dilakukan jika "NO" telah dipilih.
17	Siklus peringatan demand	(Demand) + d;	1/2/5 menit ketika siklus pengukuran adalah 10 atau 15 menit, 1/2/5/10/15 menit ketika siklus pengukuran adalah 30 menit.
18	Ruang yang tersedia di kartu SD	80	Menampilkan ruang yang tersedia di kartu SD yang terpasang dalam persentase.
19	Format kartu SD	SD	ON(Format)/ OFF(Tidak diformat)
20	Ruang yang tersedia dalam Memori internal	(陳藤利)	Menampilkan ruang yang tersedia dalam memori internal dalam persentase.
21	Format Memori internal		ON(Format)/ OFF(Tidak diformat)
22	System reset	RESET	ON(Atur ulang)/ OFF(Tidak diatur ulang)
23	Nomor ID	-	No. ID khusus (00-001 - 99-999)
24	Pengaturan pembacaan	CONF	No. simpan: 01 - 20
25	Pengaturan penyimpanan	CONF	No. simpan: 01 - 20
26	Bluetooth	8	ON/ OFF
27	Pengaturan Otomatis Rentang V/A	AUTO Set	ON/ OFF

*1 : Pengaturan 11& 12 hanya dapat diubah bila Pengaturan 10 disetel ke "ON".

*2 : Pengaturan 13& 14 hanya dapat diubah bila Pengaturan 10 disetel ke "OFF".

"Pengaturan 01" Sistem pengkabelan

Berikut ini menjelaskan cara membuat pengaturan untuk sistem pengkabelan.

Pilih sistem pengkabelan yang sesuai dengan lingkungan yang akan diukur.

	1P2W(1ch)	: 2 kabel fase tung	gal (1ch)
	1P2W(2ch)	: 2 kabel fase tung	gal (2ch)
ltam	1P2W(3ch)	: 2 kabel fase tung	gal (3ch)
	1P3W	: 3 kabel fase tung	gal
pengaturan	3P3W	: 3 kabel tiga fase	
	3P3W3A	: 3 kabel tiga fase	
	3P4W	: 4 kabel tiga fase	
Nilai default (atau setelah pengaturan ulang sistem) 3P3W			3P3W

* Metode dua wattmeter sebaiknya digunakan untuk mengukur 3P3W yang memerlukan penggunaan dua Sensor penjepit.

* Untuk mengukur/mencatat tegangan dan arus pada setiap fase, pilih "3P3W3A" dan gunakan tiga Sensor penjepit.

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 01".

Z Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Pengaturan saat ini (atau nilai default: 3P3W) berkedip. Pilih konfigurasi pengkabelan yang sesuai

dengan tombol <mark>Kursor</mark>, lalu tekan tombol <mark>ENTER</mark> setelah membuat perubahan yang diperlukan.

"Pengaturan 02" Rentang tegangan

Disarankan untuk memilih rentang pengukuran sehingga perkiraan masukan mendekati nilai skala penuh untuk memperoleh hasil yang akurat. Pilihan rentang yang direkomendasikan adalah: Rentang 150V untuk tegangan terukur antara 100 – 120 V, rentang 300V untuk 200 – 240 V, dan rentang 600V untuk 400 – 440 V.

ltem pengaturan	150 V/300 V/60	V 0C
Nilai default (atau setelah pengaturan ulang sistem)		300 V

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 02".

Z Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Pengaturan saat ini (atau nilai default: 300V) berkedip. Pilih rentang tegangan yang sesuai

dengan tombol Kursor, lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

"Pengaturan 03" Sensor penjepit

Rentang arus yang dapat dipilih ("Pengaturan O4") berbeda menurut Sensor penjepit yang dipilih.

Sensor penjepit	Rentang arus ("Pengaturan 04")	
50A (M-8128/KEW 8135)	1 / 5 / 10 / 25 / 50A / AUTO	
100A (M-8127)	2 / 10 / 20 / 50 / 100A / AUTO	
200A (M-8126)	4 / 20 / 40 / 100 / 200A / AUTO	
500A (M-8125)	10 / 50 / 100 / 250 / 500A / AUTO	
1000A (M-8124/KEW 8130)	20 / 100 / 200 / 500 / 1000A / AUTO)
3000A (KEW 8129/ 8133)	300 / 1000 / 3000A	
Nilai default (atau setelah pengaturan ula	ang sistem) 500A	

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 03".

Z Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

Pengaturan saat ini (atau nilai default: 500A) berkedip. Pilih Sensor penjepit yang sesuai dengan

tombol Kursor, lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

CATATAN:

* Hasil yang akurat mungkin tidak diperoleh jika Sensor penjepit yang digunakan tidak sesuai dengan pengaturan yang dilakukan untuk sensor.

"Pengaturan 04" Rentang arus

Rentang arus yang dapat dipilih berbeda menurut sensor penjepit yang dipilih "Pengaturan 03".

Sensor penjepit ("Pengaturan 03")	Rentang arus
50A (M-8128/KEW 8135)	1 / 5 / 10 / 25 / 50A / AUTO
100A (M-8127)	2 / 10 / 20 / 50 / 100A / AUTO
200A (M-8126)	4 / 20 / 40 / 100 / 200A / AUTO
500A (M-8125)	10 / 50 / 100 / 250 / 500A / AUTO
1000A (M-8124/KEW 8130)	20 / 100 / 200 / 500 / 1000A / AUTO
3000A (KEW 8129/ 8133)	300 / 1000 / 3000A
Nilai default (atau setelah pengaturan ula	na sistem) AUTO

* Memilih "AUTO" akan mengaktifkan fungsi rentang otomatis dan rentang pengukuran akan secara otomatis dialihkan antara rentang terendah dan tertinggi.

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 04".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

Pengaturan saat ini (atau nilai default: AUTO) berkedip. Pilih rentang arus yang sesuai dengan tombol Kursor, lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

CATATAN:

- * Ketika jenis sensor penjepit ("Pengaturan 04") diubah, rentang arus dapat diubah ke rentang yang sesuai secara otomatis.
- * Hasil yang akurat mungkin tidak diperoleh jika Sensor penjepit yang digunakan tidak sesuai dengan pengaturan yang dilakukan untuk sensor.
- * Menggunakan fungsi rentang otomatis dapat mengukur rentang sinyal masukan yang luas, namun, hasil yang akurat mungkin tidak diperoleh saat mengukur muatan yang berfluktuasi begitu luas dalam waktu 1 detik.

"Pengaturan 05" Rasio VT

Untuk informasi detail tentang rasio VT, silakan lihat "5-3 Rasio VT/CT" dalam panduan ini.

Rentang pengaturan	0,01 - 9999,99
	(dapat diatur dengan 0,01)
Nilai default (atau setelah	1,00
pengaturan ulang sistem)	

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 05".

Z Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Digit paling kanan dari pengaturan sebelumnya (atau nilai default: 1,00) berkedip. Pilih nomor

dengan tombol Kursor, lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

Fungsi tombol Kursor:

Untuk memilih subjek digit yang akan diubah.
Untuk mengubah nilai digit yang dipilih.

Ketika rasio VT diatur ke selain 1, tanda " 🖤 " akan muncul pada LCD.

CATATAN

* Ketika 0 ditetapkan sebagai rasio VT, secara paksa diubah menjadi 1.

Untuk informasi detail tentang rasio CT, silakan lihat "5-3 Rasio VT/CT" dalam panduan ini.

Rentang pengaturan	0,01 - 9999,99
	(dapat diatur dengan 0,01)
Nilai default (atau setelah	1,00
pengaturan ulang sistem)	

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 06".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Digit paling kanan dari pengaturan sebelumnya (atau nilai default: 1,00) berkedip. Pilih nomor

dengan tombol Kursor, lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

Fungsi tombol Kursor:

$\blacksquare \blacktriangleright$	Untuk memilih subjek digit yang akan		
	diubah.		
	Untuk mengubah nilai digit yang dipilih.		

Ketika rasio CT diatur ke selain 1, tanda " 🗂 " akan muncul pada LCD.

CATATAN

* Ketika 0 ditetapkan sebagai rasio CT, secara paksa diubah menjadi 1.

"Pengaturan 07" Pengaturan waktu

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 07".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Kemudian detik secara paksa diubah menjadi "00" dan mulai berkedip. Pilih parameter waktu yang akan diubah dengan tombol Kursor Kiri & Kanan dan ubah dengan tombol Kursor Atas & Bawah.

4 Lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

Waktu	Rentang
Waklu	pengaturan
detik	00 - 59
menit	00 - 59
jam	00 – 23
hari	01 – 31
bulan	01 - 12
tahun	00 – 50*

(*) Untuk tahun, harap atur 2 digit terakhir. (misalnya, 2004 -> 04)

Fungsi tombol Kursor:

	Untuk memilih subjek parameter waktu yang akan diubah.
$\blacksquare \overline{\mathbf{V}}$	Untuk mengubah nilai parameter waktu yang dipilih.
"Pengaturan 08" Pengaturan Buzzer

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 08".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

Pengaturan saat ini (atau nilai default: on) berkedip. Tekan tombol Kursor untuk memilih "on" (suara) atau "oFF" (bukan suara), lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

"Pengaturan 09" Interval rekaman

Berikut ini penjelasan cara mengatur interval pencatatan untuk pengukuran integrasi/demand. Interval perekaman adalah jarak waktu untuk mencatat setiap data pengukuran ke dalam Kartu SD atau memori internal.

	1/	2/	5/	10 /	15 /	20 /	30 dtk.,
Waktu pengaturan	1/	2/	5/	10 /	15 /	20 /	30 mnt.,
	1ja	m					
Nilai default						20 mm	\ +
(atau setelah pengaturan ulang sistem)						30 mr	ιι.

1 Gunakan tombol <mark>Kursor</mark> pada layar pemilihan dan pilih "Pengaturan 09".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Pengaturan sebelumnya (atau nilai default: 30 mnt.) berkedip. Tekan tombol Kursor untuk memilih

waktu yang diinginkan, lalu tekan tombol **ENTER** setelah membuat perubahan yang diperlukan.

		\frown
Jam	Menit	Detik

- * Interval yang dapat dipilih dibatasi oleh pengaturan yang dilakukan pada Pengaturan 16 (Siklus pengukuran demand).
- Interval yang lebih besar dari nilai yang ditetapkan pada Pengaturan 16 tidak dapat dipilih.
- Intervalnya harus habis dibagi dengan nilai yang ditetapkan pada Pengaturan 16.
- Interval mana pun di atas dapat dipilih jika "NO" dipilih pada Pengaturan 16.

"Pengaturan 10" Rekam periode waktu khusus atau rekam tanpa akhir

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 10".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Pengaturan saat ini (atau nilai default: OFF) berkedip. Tekan tombol Kursor untuk memilih "ON" atau "OFF".

ON : Menentukan waktu mulai/berhenti perekaman (direkam berulang kali).

OFF: Merekam data secara kontinu.

4 Tekan tombol **ENTER** setelah membuat perubahan yang diperlukan.

CATATAN:

- * Layar pengaturan untuk Pengaturan 11 hingga 14 mungkin tidak ditampilkan sesuai dengan pengaturan yang dilakukan pada Pengaturan 10.
- Jika Pengaturan 10 telah diatur ke "ON", layar pengaturan untuk Pengaturan 11 dan 12 akan ditampilkan, tetapi untuk Pengaturan 13 dan 14 tidak akan ditampilkan.

- Jika Pengaturan 10 telah diatur ke "OFF", layar pengaturan untuk Pengaturan 13 dan 14 akan ditampilkan, tetapi untuk Pengaturan 11 dan 12 tidak akan ditampilkan.

"Pengaturan 11" Pengaturan periode waktu (Pengaturan waktu)

Berikut ini penjelasan cara mengatur waktu mulai/menghentikan perekaman.

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 11".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Kemudian detik untuk waktu berhenti perekaman akan berkedip.

4 Pilih parameter waktu yang akan diubah dan ubah dengan tombol Kursor.

5 Lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

* Waktu mulai ditampilkan di baris atas dan waktu berhenti di baris bawah.

CATATAN:

Item pengaturan ini tidak akan ditampilkan jika Pengaturan 10 telah diatur ke "OFF".

"Pengaturan 12" Pengaturan periode waktu (Pengaturan tanggal)

Berikut ini penjelasan cara mengatur tanggal mulai/menghentikan perekaman.

- 1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 12".
- 2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Kemudian hari untuk tanggal berhenti perekaman akan berkedip.

4 Tekan Tombol Kursor dan pilih tanggal yang diinginkan.

5 Lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

* Tanggal mulai ditampilkan di baris atas dan tanggal berhenti di baris bawah.

Contoh:

Jika waktu dan tanggal mulai/berhenti perekaman telah diatur sebagai berikut,

Pengaturan 11 (waktu) = 8:00:00 - 18:00:00

Pengaturan 12 (tanggal) = 12.08.01 - 12.08.07

instrumen secara otomatis melakukan perekaman pada waktu dan tanggal berikutnya.

- 1. 8:00 hingga 18:00 pada 1 Agustus 2012,
- 2. 8:00 hingga 18:00 pada 2 Agustus 2012,
- 3. 8:00 hingga 18:00 pada 3 Agustus 2012,
- 4. 8:00 hingga 18:00 pada 4 Agustus 2012,
- 5. 8:00 hingga 18:00 pada 5 Agustus 2012,
- 6. 8:00 hingga 18:00 pada 6 Agustus 2012, dan
- 7. 8:00 hingga 18:00 pada 7 Agustus 2012.

CATATAN:

Item pengaturan ini tidak akan ditampilkan jika Pengaturan 10 telah diatur ke "OFF".

"Pengaturan 13" Awal dari pengukuran berkelanjutan

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 13".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan. Pada LCD,

waktu (Pengaturan 07); 1 mnt. dimajukan, ditampilkan, dan detik akan berkedip.

3 Ubah waktu dan tanggal dengan Tombol Kursor.

4 Lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

Fungsi tombol Kursor:

	Untuk memilih subjek parameter waktu yang akan diubah.
$\blacksquare \nabla$	Untuk mengubah nilai parameter waktu yang dipilih.

"Pengaturan 14" Menghentikan pengukuran berkelanjutan

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 14".

2 Tekan tombol <mark>ENTER</mark> untuk memasukkan instrumen ke mode perubahan pengaturan. Pada LCD,

waktu mulai pengukuran (Pengaturan 13) + 1 jam, ditampilkan dan detik akan berkedip.

3 Ubah waktu dan tanggal dengan Tombol <mark>Kursor</mark>.

4 Lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

Contoh:

Ketika waktu dan tanggal mulai/berhenti telah ditetapkan sebagai berikut,

Pengaturan 13 (mulai) = 12.08.01, 08:00:00

Pengaturan 14 (berhenti) = 12.08.07, 18:00:00

instrumen secara otomatis melakukan pengukuran selama periode berikutnya.

Dari 8:00 pada 1 Agustus 2012 hingga 18:00 pada 7 Agustus 2012

CATATAN:

* Waktu dan tanggal berhenti (Pengaturan 14) harus diatur setelah waktu mulai (Pengaturan 13) sedemikian rupa untuk memberikan waktu yang cukup kepada pengguna untuk menyelesaikan semua pengaturan sebelum pengukuran dimulai.

Jika tidak, pesan kesalahan akan ditampilkan pada LCD dan instrumen tidak dapat memulai pengukuran dan perekaman data.

Ketika pesan kesalahan muncul, tekan tombol **ENTER** dan putar tombol Fungsi ke rentang SETUP untuk mengulang pengaturan.

"Pengaturan 15" Demand target

Untuk detail tentang nilai target demand, silakan lihat **"Bagian 8": Pengukuran demand**. Nilai target yang dapat dipilih antara 0,1 W hingga 999,9 GW.

	Nilai	Unit
Nilai target demand 0,1 - 999,9 (dapat diatur denga	0,1 - 999,9 (dapat diatur dengan 0,1)	W / kW / MW / GW VA / k VA / M VA / G VA
Nilai default (atau setelah pengaturan ulang sistem)		100,0kW

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 15".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Pengaturan saat ini (atau nilai default: 100,0kW) berkedip. Ubah nilai dan unit dengan tombol

Kursor.

4 Tekan tombol ENTER setelah membuat perubahan yang diperlukan.

Fungsi tombol Kursor:

$\blacksquare \blacktriangleright$	Untuk memilih subjek parameter digit atau unit yang akan diubah.
	Untuk mengubah nilai digit dan parameter unit yang dipilih.

Baik "W" atau "VA" dapat ditetapkan sebagai unit.

Instrumen dapat menampilkan dan mencatat nilai demand daya aktif dan nyata dengan mengganti unit di atas.

CATATAN:

* Jika disetel ke 0,0, nilai target akan diubah secara paksa menjadi 100,0.

"Pengaturan 16" Siklus pengukuran demand

Siklus pengukuran demand akan digunakan untuk menghitung nilai demand.

Waktu pengaturan	NO /	10 /	15 /	30 mnt
Nilai default (atau setel	n	20 mpt		
ulang siste		30 mm		

* Pengukuran demand tidak akan dilakukan jika "NO" telah dipilih.

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 16".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

Pengaturan saat ini (atau nilai default: 30 mnt.) berkedip. Tekan tombol Kursor dan atur waktu yang diinginkan.

4 Tekan tombol ENTER setelah membuat perubahan yang diperlukan.

"Pengaturan 17" Siklus peringatan demand

Buzzer akan berbunyi ketika nilai demand yang diprediksi melebihi nilai target demand pada saat pengukuran demand.

Untuk detail lebih lanjut, lihat **"Bagian 8": Pengukuran demand**.

Berdasarkan interval pengukuran demand yang telah diatur pada Pengaturan 16, siklus peringatan dapat diatur sebagai berikut.

Siklus pengukuran demand "Pengaturan 16"	Siklus peringatan			
10/ 15 mnt.	1/2/	5 mnt.		
30 mnt.	1 / 2 / 5 / 10 / 15 mnt.			
Nilai default (atau setelah		10 mnt.		
pengaturan ulang sistem)				

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 17".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Pengaturan sebelumnya (atau nilai default: 10 mnt.) berkedip. Tekan tombol Kursor untuk memilih

waktu yang diinginkan, lalu tekan tombol **ENTER** setelah membuat perubahan yang diperlukan.

"Pengaturan 18" Ruang yang tersedia di kartu SD

Berikut ini penjelasan cara memeriksa ruang yang tersedia di kartu SD.

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 18".

2 Kemudian ruang yang tersedia di kartu SD di KEW 6305 akan ditampilkan.

(0 – 100%, ditampilkan dengan 1%)

* Bilah ("----") akan ditampilkan jika kartu SD tidak dimasukkan.

CATATAN:

Ketika menggunakan kartu SD 2GB, 511 file (maksimum) dapat disimpan. KEW 6305 tidak dapat melakukan perekaman apa pun jika jumlah file yang disimpan melebihi batas meskipun masih ada ruang yang tersedia di kartu SD.

"Pengaturan 19" Format kartu SD

Kartu SD yang baru dibeli harus diformat sebelum digunakan.

Untuk detail tentang Kartu SD, lihat "Bagian 9: Kartu SD/Memori internal" dalam panduan ini.

PERHATIAN

Pastikan tombol Fungsi diatur ke posisi "OFF" sebelum memasang/melepas Kartu SD. Jika Kartu SD diletakkan/dilepas saat instrumen menyala, data atau instrumen yang disimpan dapat rusak.

Pastikan tombol Fungsi berada pada posisi "OFF", lalu masukkan Kartu SD ke dalam slot Kartu SD pada instrumen.

2 Atur tombol Fungsi ke rentang SET UP.

3 Pada layar pemilihan, pilih "Pengaturan 19" dengan tombol Kursor.

4 Kemudian tekan tombol $\overline{\mathsf{ENTER}}$ untuk membuat instrumen dalam mode perubahan pengaturan.

5 Pesan "OFF" (tidak diformat) akan berkedip. Ubah ke "ON" (format) dengan tombol <mark>Kursor</mark>.

(Jika tidak ada kartu SD yang dimasukkan ke dalam instrumen, Anda tidak dapat mengaturnya ke "ON".)

6 Ketika menekan tombol <mark>ENTER</mark>, format akan dimulai.

(Pemformatan memerlukan waktu beberapa detik.)

Setelah pemformatan, pesan "FINISH" ditampilkan pada LCD.

- * Harap gunakan kartu SD yang disertakan dengan instrumen ini atau disertakan sebagai komponen opsional.
- * Semua data di kartu SD akan dihapus setelah diformat.
- * Pastikan untuk memeriksa apakah Kartu SD berfungsi dengan baik pada perangkat keras yang diketahui.
- * Mengenai manipulasi Kartu SD, silakan lihat panduan petunjuk yang disertakan pada kartu.
- * Kartu SD berkapasitas 2GB atau kurang akan diformat ke FAT16 dan kartu berkapasitas 4GB atau lebih ke FAT32.

"Pengaturan 20" Ruang yang tersedia di memori internal

Berikut ini penjelasan cara memeriksa ruang yang tersedia di memori internal.

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 20".

Kemudian ruang yang tersedia di memori internal KEW 6305 akan ditampilkan. (0 – 100%, ditampilkan dengan 25%)

CATATAN:

Jumlah maksimal file yang dapat disimpan di memori internal adalah empat. Jika salah satu file berukuran melebihi 2,25MB, tidak ada lagi file yang dapat disimpan di memori.

"Pengaturan 21" Format Memori internal

- 1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 21".
- 2 Kemudian tekan tombol ENTER untuk membuat instrumen dalam mode perubahan pengaturan.
- 3 Pesan "OFF" (tidak diformat) akan berkedip. Ubah ke "ON" (format) dengan tombol Kursor.
- 4 Ketika menekan tombol ENTER, format akan dimulai.

(Pemformatan memerlukan waktu beberapa detik.)

5 Setelah pemformatan, pesan "FINISH" ditampilkan pada LCD.

CATATAN:

* Semua data di memori internal akan dihapus setelah diformat.

"Pengaturan 22" Pengaturan ulang sistem

Berikut ini penjelasan cara melakukan pengaturan ulang sistem untuk mengembalikan semua pengaturan ke default.

Untuk detail lebih lanjut tentang pengaturan ulang sistem, lihat "**Bagian 11: Fungsi tambahan**" dalam panduan ini.

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 22".

2 Kemudian tekan tombol ENTER untuk membuat instrumen berada dalam mode perubahan pengaturan.

3 Pesan "OFF" (tidak diatur ulang) akan berkedip. Ubah ke "ON" (atur ulang) dengan tombol <mark>Kurso</mark>r.

4 Ketika menekan tombol ENTER, pengaturan ulang sistem akan dimulai.

* Pengaturan akan kembali ke "OFF" ketika pengaturan ulang sistem selesai.

"Pengaturan 23" Nomor ID

Rentang pengaturan	00-001 - 99-999
Nilai default (atau setelah	00 - 001
pengaturan ulang sistem)	

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 23".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Digit paling kanan dari pengaturan saat ini (atau nilai default: 1,00) berkedip. Pilih nomor dengan

tombol Kursor, lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

Fungsi tombol Kursor:

$\blacksquare \blacktriangleright$	Untuk memilih subjek digit yang akan diubah.
	Untuk mengubah nilai digit yang dipilih.

Nomor apa pun yang diinginkan, selain nomor seri, dapat ditetapkan sebagai nomor ID dan akan disimpan bersama dengan file data yang direkam.

"Pengaturan 24" Pembacaan pengaturan

Berikut ini penjelasan cara memuat pengaturan yang disimpan di "Pengaturan 25". Lihat "Pengaturan 25" yang menunjukkan cara menyimpan pengaturan.

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 24".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Pilih Nomor simpan pengaturan dari 01 hingga 20 dengan tombol Kursor, lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

CATATAN

* Saat memuat nomor penyimpanan pengaturan yang belum ada pengaturannya, pengaturan default pada setiap pengaturan (7 item) menjadi efektif.

"Pengaturan 25" Penyimpanan pengaturan

Berikut ini menjelaskan cara menyimpan item pengaturan. Tujuh item di bawah ini dapat disimpan.

Membuat pengaturan yang diperlukan untuk mengikuti 7 item dan menyimpannya. Kemudian dapat dimuat dari Pengaturan 24 di waktu berikutnya. Nomor yang dapat dipilih: 01 - 20

No. pengaturan	
Pengaturan 01	Sistem pengkabelan
Pengaturan 02	Rentang tegangan
Pengaturan 03	Sensor penjepit
Pengaturan 04	Rentang arus
Pengaturan 05	Rasio VT
Pengaturan 06	Rasio CT
Pengaturan 08	Buzzer

Nomor penyimpanan pengaturan

1 7 item di atas diatur bila diperlukan. (Silakan lihat setiap prosedur pengaturan.)

2 Pilih Pengaturan 25 dengan tombol Kursor pada layar pemilihan.

3 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

4 Pilih nomor penyimpanan pengaturan (01 - 20) dengan tombol Kursor.

5 Tekan tombol ENTER setelah membuat pengaturan yang diperlukan.

- * Jika pengaturan baru dibuat pada nomor penyimpanan pengaturan, yang pengaturannya sudah dilakukan, pengaturan sebelumnya akan ditimpa.
- * Semua item yang disimpan (pengaturan) akan dikembalikan ke default setelah pengaturan ulang sistem.

"Pengaturan 26" Bluetooth

1 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 26".

2 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

3 Pengaturan saat ini (atau nilai default: OFF) berkedip. Tekan tombol Kursor untuk memilih "ON"

atau "OFF", lalu tekan tombol ENTER setelah membuat perubahan yang diperlukan.

- Untuk menghemat masa pakai baterai, disarankan untuk mematikan fungsi Bluetooth saat Anda tidak menggunakannya.
- LED (biru) yang dipasang di dekat konektor kartu SD menyala ketika "ON" dipilih.

"Pengaturan 27" Pengaturan otomatis rentang V/A

Berikut ini penjelasan cara mengaktifkan pengaturan otomatis untuk Rentang Tegangan (Pengaturan 02), Meter Penjepit (Pengaturan 03), Rentang Arus (Pengaturan 04).

1 Pilih konfigurasi pengkabelan yang sesuai pada Pengaturan 01.

2 Hubungkan instrumen ke sirkuit yang diuji.

3 Gunakan tombol Kursor pada layar pemilihan dan pilih "Pengaturan 27".

4 Tekan tombol ENTER untuk memasukkan instrumen ke mode perubahan pengaturan.

5 Tekan tombol Kursor untuk memilih "ON", lalu tekan tombol ENTER.

Jika muncul pesan "Err" di LCD, harap periksa koneksi sensor penjepit.

- * Jika instrumen gagal mendeteksi sensor yang terhubung dengan benar, pengaturan default (Tipe 8125/ 500 A) akan berlaku.
- * Untuk Rentang arus, "AUTO" akan dipilih secara otomatis.

5. Konfigurasi pengkabelan

5.1 Pemeriksaan Awal yang Penting

BAHAYA

- Jangan melakukan pengukuran pada rangkaian yang potensial listriknya melebihi 600 V AC.
- Hubungkan Kabel daya ke stopkontak. Jangan pernah menghubungkan ke stopkontak 240 V AC atau lebih.
- Sensor penjepit, Kabel uji tegangan, dan Kabel daya harus dihubungkan ke instrumen terlebih dahulu.
- Kabel uji tegangan atau Sensor penjepit tidak boleh dihubungkan ke terminal masukan instrumen jika tidak diperlukan untuk pengukuran.
- Instrumen harus selalu dihubungkan pada sisi hilir pemutus arus, yang lebih aman dibandingkan sisi hulu.
- Jangan membuka sirkuit sisi sekunder CT tambahan ketika sedang diberi energi karena tegangan tinggi dihasilkan pada terminal sisi sekunder.
- Berhati-hatilah untuk menghindari hubungan arus pendek pada saluran listrik dengan bagian perangkat pemeriksaan pengujian tegangan yang tidak diisolasi selama pengaturan instrumen. Ujung rahang transformator didesain sedemikian rupa untuk menghindari hubungan arus pendek. Jika sirkuit yang sedang diuji memiliki bagian konduktif, perhatian ekstra harus diberikan untuk meminimalkan kemungkinan korsleting.
- Pastikan jari dan tangan Anda di belakang penghalang selama pengukuran.

🛆 PERINGATAN

- Untuk menghindari kemungkinan sengatan listrik dan korsleting, selalu matikan saluran listrik yang diuji saat memasang instrumen.
- Jangan sentuh ujung Perangkat pemeriksaan pengujian tegangan yang tidak berinsulasi. Penggunaan sarung tangan keselamatan berinsulasi dianjurkan.
 - Arah sensor penjepit untuk pengukuran yang benar: Pastikan tanda panah pada sensor penjepit mengarah ke sisi muatan.

5.2 Konfigurasi kabel dasar

• Metode pengkabelan untuk 3 kabel fase tunggal "1P3W"

5.3 Menggunakan VT/CT tambahan (tidak disertakan bersama instrumen)

🛆 BAHAYA

- Jangan pernah melakukan pengukuran pada sirkuit yang potensial listriknya melebihi 600 V AC.
- Hubungkan Kabel daya ke stopkontak. Jangan pernah menghubungkan ke stopkontak 240 V AC atau lebih.
- Instrumen ini harus digunakan pada sisi sekunder VT (transformator) dan CT (transformator arus).
- Jangan membuka sirkuit sisi sekunder CT tambahan ketika sedang diberi energi karena tegangan tinggi dihasilkan pada terminal sisi sekunder.

🛆 PERHATIAN

• Ketika VT atau CT digunakan akurasi pengukuran tidak terjamin karena beberapa faktor yaitu karakteristik fase dan akurasi VT/CT.

Penggunaan VT/CT tambahan mungkin diperlukan jika nilai tegangan/arus sirkuit yang sedang diuji berada di luar rentang pengukuran instrumen. Dalam hal ini, nilai pada sisi primer sirkuit dapat diperoleh secara langsung dengan mengukur sisi sekunder dengan memasang VT atau CT pada jalur yang sedang diuji sebagai berikut.

<Contoh 2 kabel fase tunggal (1ch) "1P2W(1ch)">

Dalam hal ini, tetapkan rasio aktual VT dan CT yang akan digunakan.

- * Rasio VT: "Pengaturan 05"
- * Rasio CT: "Pengaturan 06"

5.4 Pemeriksaan kabel

Instrumen ini memiliki fungsi Wiring check untuk memeriksa koneksi guna mencegah koneksi yang salah.

5.4.1 Prosedur pemeriksaan

1 Putar tombol Fungsi ke posisi "WIRING CHECK". (Pastikan Kabel uji tegangan/Sensor penjepit yang diperlukan terhubung ke instrumen/sirkuit yang sedang diuji.)

Z Tekan Tombol ENTER. (Pemeriksaan akan dimulai.)

V_Range 300v

500;

Hz

3 Hasil pemeriksaan akan ditampilkan sekitar setelah 5 dtk.

Pindahkan kursor pada baris yang menunjukkan kesalahan dan tekan tombol ENTER. Kemudian nilai dugaan kesalahan akan ditampilkan pada LCD.

mungkin salah.

5.4.2 Konten yang ditampilkan

Layar tampilan yang dapat dipilih pada rentang WIRING CHECK adalah sebagai berikut. Tekan tombol <mark>Kursor</mark> untuk beralih layar berikut.

Sistem	Ditampilkan	Parameter yang akan ditampilkan							
pengkabelan (Pengaturan 01)	pada	Layar 1	Layar 2	Layar 3	Layar 4	Layar 5	Layar 6		
3P4W	Atas	f	V1	A1	P1	PF1	DEG(V1)		
323W34	Tengah	V(avg)	V2	A2	P2	P2 PF2			
	Bawah	A(avg)	V3	AЗ	P3	PF3	DEG(V3)		
ואוכחכ	Atas	f	V1	A1	P1	PF1	DEG(V1)		
1P3W	Tengah	V(avg)	V2	A2	P2	PF2	DEG(V2)		
	Bawah	A(avg)	_	_	_	_	_		
	Atas	f	V1	A1	P1	PF1			
1P2W(3ch)	Tengah	V1	—	A2	P2	PF2	—		
	Bawah	A(avg)	_	AЗ	P3	PF3			
	Atas	f	V1	A1	P1	PF1			
1P2W(2ch)	Tengah	V1	—	A2	P2	PF2	—		
	Bawah	A(avg)	—	_	_	_			
	Atas	f	V1	A1	P1	PF1			
1P2W(1ch)	Tengah	V1	_	—	—	—	—		
	Bawah	A1	—	—	_	—			

5.4.3 Kriteria penilaian

pemeriksaanKriteria peniualan3P4W3P3WA3P3W1P3WP2W-3P2W-2P2W-1kesalahanFrekuensiHarus 45 Hz atau lebih. Harus 65 Hz atau kurang.ffErr.Lo_HzErr.HL_HzMasukan teganganHarus 60% atau lebih (rentang V x rasio VT). Harus 110% atau kurang dari (rentang V x rasio VT). $V1 / V2 / V3$ $V1 / V2 / V3$ $V1 / V2 / V1$ $V1 / V2 / V1$ Err.Lo_VFase teganganHarus berada dalam ±10° dari fase referensi.DEG(V2) 120° DEG(V3) 120°DEG (V2) 120°DEG (V2) 180°DEG (V2) 180°Err.PH_VErr.PH_VKeseimbangan teganganHarus dalam ±20% terhadap V1. $V2 / V3$ $V2 / V3$ $V2 / V3$ $V2 / V3$ $Err.bL_V$ Masukan arus teganganHarus 10% atau lebih dari (Rentang A x Rasio CT). * Satu rentang rendah jika rentang otomatis telah diplih. Harus 110% atau kurang dari (Rentang A x Rasio CT). $A1 / A2 / A3$ $A1 / A2 / A2 / A1 / A1$	Item			Sist	em u	ntuk	diperi	iksa		Pesan
Frekuensi Harus 45 Hz atau lebih. Harus 65 Hz atau kurang.fErr.lo_Hz Err.HL_HzMasukan tegangan (rentang V x rasio VT). Harus 110% atau kurang dari (rentang V x rasio VT). $1/V2/V3$ V3 $V1/V2/V3$ V1/V2/V3 $V1/V2/V3$ V1/V2/V3 $V1/V2/V3$ V1/V2/V3 $V1/V2/V3$ V1/V2/V3 $V1/V2/V3$ V1/V2/V3 $V1/V2/V3$ V1/V2/V3 $V1/V2/V3$ V1/V2/V3 $V1/V2/V3$ V2/V3 $V2/V3$ $V2/V3$ V2/V3 $V2/V3$ $V2/V3$ V3 $V2/V3$ $V2/V3$ V3 $V2/V3$ $V2/V3$ V3 $V2/V3$ $V2/V3$ V3 $V2/V3$ $V2/V3$ V3 $V2/V3$ V4 $V2/V4$ V4 $V2/V4$	pemeriksaan	Kriteria penilaian	3P4W	3P3W3A	3P3W	1P3W	1P2W-3	1P2W-2	1P2W-1	kesalahan
Harus 65 Hz atau kurang.Image: harus 65 Hz atau kurang.Err.Hi_HzMasukan teganganHarus 60% atau lebih (rentang V x rasio VT). Harus 110% atau kurang dari (rentang V x rasio VT). $V1/V2/V3$ $V1/V2/V3$ $V1/V2/V1$ $V1/V1/V1$ $V1/V2/V1$ $V1/V1/V1$ <	Frekuensi	Harus 45 Hz atau lebih.	f							Err.Lo_Hz
Masukan tegangan Harus 60% atau lebih (rentang V x rasio VT). Harus 110% atau kurang dari (rentang V x rasio VT). v1/v2/ v3 v1/v2/ v3 v1/v2/ v3 v1/v2/ v3 v1/v2/ rer.Lo_V r.tho_V Fase tegangan Harus berada dalam ±10° dari fase referensi. DEG(v2) 120° DEG(v3) 240° DEG DEG DEG DEG Ter.HLV Err.PH_V Keseimbangan tegangan Harus 10% atau lebih dari (Rentang A x Rasio CT). V2/V3 V2/V3 V2/V3 Image: V1/V2 Err.bL_V Err.bL_V Masukan arus telah dipilih. Harus 10% atau kurang dari A1/A2/ A3 A1/A2/ A3 A1/A2/ A1/A2 A1/A2/A2 A1/A2 A1/A2/A2 A1/A2/A2 A1/A2 A1/A2/A2		Harus 65 Hz atau kurang.	1							Err.Hi_Hz
tegangan (rentang V x rasio VT). Harus 110% atau kurang dari (rentang V x rasio VT). V1/V2/ V3 V1/V2/ V1/V2 V1/V2/ V1/V2 V1/V2/ Fr.Hi_V V1/V2/ Fr.Hi_V Fase tegangan Harus berada dalam ±10° dari fase referensi. DEG(V2) 120° DEG(V3) :240° DEG DEG Err.PH_V Keseimbangan tegangan Harus dalam ±20% terhadap V1. V2/V3 V2 Err.bL_V Masukan arus telah dipilih. Harus 10% atau lebih dari (Rentang A x Rasio CT). V2/V3 V2 Err.bL_V A1 A1 A1 A1 A1 A1 A1 A1 Harus 110% atau kurang dari A1/A2/ A3 A1/A2 A1 A1 <t< td=""><td>Masukan</td><td>Harus 60% atau lebih</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Err.Lo V</td></t<>	Masukan	Harus 60% atau lebih								Err.Lo V
Harus 110% atau kurang dari (rentang V x rasio VT). V3 V3 V4 Err.Hi_V Fase tegangan Harus berada dalam ±10° dari fase referensi. DEG(V2) :120° DEG (V2) :300° DEG (V2) :180° Err.PH_V Keseimbangan tegangan Harus dalam ±20% terhadap V1. V2./V3 V2 Err.bL_V Masukan arus tegangan Harus 10% atau lebih dari (Rentang A x Rasio CT). V2./V3 V2 Err.bL_V Masukan arus telah dipilih. Harus 110% atau kurang dari A1/A2/ A3 A1/A2/ A3 A1/A2/ A3 A1/A2/ A1 A1/A2/ A1 A1/A2/ A1 A1/A2/ A1	tegangan	(rentang V x rasio VT).	V1/V2/		V1	∕V2	V1			211.20_1
Image: Construction of the second state in the second s		Harus 110% atau kurang dari	V3							Err.Hi V
Fase tegangan Harus berada dalam ±10° dari fase referensi. DEG(V2) (120° DEG(V3) (240° DEG (V2) (120° DEG(V3) (240° DEG (V2) (180° DEG (V2) (180° DEG (V2) (180° DEG (V2) (180° Err.PH_V Keseimbangan tegangan Harus dalam ±20% terhadap V1. V2/V3 V2 V2 Image: Second seco		(rentang V x rasio VT).								
tegangan referensi. DEG(V3) :240° (V2) (V2) Frick_v Keseimbangan tegangan Harus dalam ±20% terhadap V1. V2_V3 V2 Err.bL_v Masukan arus tegangan Harus 10% atau lebih dari (Rentang A x Rasio CT). V2_V3 V2 Err.bL_v * Satu rentang rendah jika rentang otomatis telah dipilih. A1/A2/ A1 A1 Err.Lo_A	Fase	Harus berada dalam ±10º dari fase	DEG(V :120°	2)	DEG	DEG				Err.PH_V
Keseimbangan tegangan Harus dalam ±20% terhadap V1. V2/V3 V2 Err.bL_V Masukan arus Harus 10% atau lebih dari (Rentang A x Rasio CT). A1 A1 Err.bL_A Err.bL_A Masukan arus Harus 10% atau lebih dari A1/A2 A1 A1 Err.bL_A Err.bL_A Harus 10% atau kurang dari A1/A2 A1 A1 A1 Err.bL_A	tegangan	referensi.		DEG(V3) :240°		(V2) :180°				
Harus dalam ±20% terhadap V1. V2/V3 V2 Err.bL_V Masukan arus Harus 10% atau lebih dari (Rentang A x Rasio CT). A1 A1 Frr.bL_V * Satu rentang rendah jika rentang otomatis telah dipilih. A1/A2/ A3 A1 A1 Frr.bL_V	Keseimbangan		0							
Masukan arus Harus 10% atau lebih dari Image: Constraint of the second sec	tegangan	Harus dalam ±20% terhadap V1.	V2⁄V3		V2					Err.bL_V
Masukan arus Harus 10% atau tebin dan (Rentang A x Rasio CT). * Satu rentang rendah jika rentang otomatis telah dipilih. Harus 110% atau kurang dari A3		Harva 10% atou labib dari								
(Rentang A x Rasio CT). A1 Err.Lo_A * Satu rentang rendah jika rentang otomatis / A1 / telah dipilih. / A1 / A1 Harus 110% atau kurang dari A3 A1/A2 A2 / A1	Masukan arus									
* Satu rentang rendah jika rentang otomatis telah dipilih. A1/A2/ A1/A2 A2 / A1 Harus 110% atau kurang dari A3		(Rentang A x Rasio C1). * Satu rentang rendah jika rentang otomatis					A1			Err.Lo_A
Harus 110% atau kurang dari A3							/	A1		
Harus 110% atau kurang dari ^{A3} / A2		telah dipilih.	A1/A	42/	A1/A2	A2	A2	/	A1	
		Harus 110% atau kurang dari	A3			/	A2			
(Rentang A x Rasio CT).		(Rentang A x Rasio CT).					AЗ			Err.Hi_A
* Satu rentang tinggi jika rentang otomatis		* Satu rentang tinggi jika rentang otomatis								
telah dipilih.		telah dipilih.								
Fase arus PF	Fase arus						PF			
							1	PF		
PFi (nilai absolut) harus 0,5 atau		PFi (nilai absolut) harus 0,5 atau		1052				1	DE	
lebih. $\begin{array}{c c} PFI \ PF2 \\ PF1 \ PF2 \\ PF1 \ PF2 \\ PF1 \ PF2 \\ 2 \\ 1 \\ \end{array}$		lebih.		772 2	PF1/	∕PF2	2	/	1	Err.PH_A
* untuk 3P3W3A, 0 <u><</u> PFi		* untuk 3P3W3A, 0 <u><</u> PFi		5				PF		
							PF	2		
3							3	3		
P1							P1			
				2/			/	P1		
Pi harus bernilai positif. P1 P2 P2 P2 P1 P1 P1 P3		Pi harus bernilai positif.	P3		P1/	P2	P2	/	P1	
								P2		

*KEW 6305 mungkin menunjukkan adanya koneksi yang salah jika terdapat faktor daya yang besar (0,5 atau kurang) di lokasi pengukuran.

5.4.4 Kemungkinan penyebab kesalahan

Pemeriksaan	Kemungkinan penyebab						
Frekuensi	- Klip tegangan terpasang erat ke DUT?						
	- Mengukur komponen harmonik terlalu tinggi?						
Masukan	- Klip tegangan terpasang erat ke DUT?						
tegangan	- Kabel uji tegangan terhubung erat ke terminal masukan tegangan pada						
	instrumen?						
Keseimbangan	- Pengaturannya cocok dengan sistem pengkabelan yang sedang diuji?						
tegangan	- Klip tegangan terpasang erat ke DUT?						
	- Kabel uji tegangan terhubung erat ke terminal masukan tegangan pada						
	instrumen?						
Fase tegangan	- Kabel uji tegangan terhubung dengan benar?						
	(Terhubung ke saluran yang tepat?)						
Masukan arus	- Sensor penjepit terhubung erat ke terminal masukan daya pada						
	instrumen?						
	- Pengaturan Rentang Arus sesuai untuk level masukan?						
Fase arus	- Tanda panah pada Sensor penjepit dan orientasi arus yang mengalir bertepatan						
	satu sama lain? (Catu daya ke Muatan)						
	- Sensor penjepit terhubung dengan benar?						

6. Pengukuran nilai sesaat

Atur tombol Fungsi ke rentang **W**.

• Indikasi

Parameter Pengukuran/Penghitungan U					
Tegangan (RMS)	Vi: Tegangan per fase (V1,V2,V3)	V			
Arus (RMS)	Ai: Arus per fase (A1,A2,A3)	А			
Daya aktif	P : Daya aktif total Pi : Daya aktif per fase	14/			
	Polaritas: (tidak ada tanda) konsumsi, - (minus) melakukan regenerasi	VV			
Daya reaktif	Q : Daya reaktif total Qi : Daya reaktif per fase	Ver			
	Polaritas: (tidak ada tanda) jeda fase, - (minus) uji fase	var			
Daya nyata	S : Daya nyata total Si : Daya nyata per fase	VA			
Faktor daya	PF : Faktor daya dari keseluruhan sistem Pfi : Faktor daya per fase	DE			
(cos	Polaritas: (tidak ada tanda) jeda fase, - (minus) uji fase	PF			
Frekuensi	f : Frekuensi V1	Hz			
Arus netral	In 🛛 : arus netral (hanya dengan 4 kabel tiga fase)	An			
	i = 1, 2, 3				

Parameter yang ditampilkan dapat diubah sesuai kebutuhan.

Lihat "6-3 Menyesuaikan tampilan" dalam panduan ini.

CATATAN

* Parameter di atas berbeda tergantung pada setiap konfigurasi kabel.

* Jika V1 berada di luar rentang pengukuran, parameter lain tidak dapat diukur atau dihitung.

* Unit yang dipilih untuk faktor daya dan arus netral bersifat arbitrer.

• Sebelum melakukan pengukuran

• Pengaturan dasar

"Pengaturan 01"	Pengkabelan
"Pengaturan 02"	Rentang tegangan
"Pengaturan 03"	Rentang arus
"Pengaturan 04"	Sensor penjepit
"Pengaturan 05"	Rasio VT (jika diperlukan)
"Pengaturan 06"	Rasio CT (jika diperlukan)

• Tombol

	Kunci	Deskripsi
START /STOP	Tombol START/STOP	Tidak ada penggunaan
	Tombol BACKLIGHT	Menghidupkan/mematikan lampu latar belakang LCD.
	Tombol kursor ATAS Tombol kursor BAWAH	Mengubah konten tampilan. Memilih baris yang akan diubah saat berada dalam mode tampilan kustom.
	Tombol kursor KIRI Tombol kursor KANAN	Mengubah konten tampilan. Memilih parameter (V, A, dll.) yang akan ditampilkan saat berada dalam mode tampilan kustom
ENTER	Tombol <mark>ENTER</mark>	Memilih/Memasukkan mode tampilan kustom. Mengonfirmasi penghapusan file dalam memori internal.
ESC	Tombol <mark>ESC</mark>	Membatalkan pengaturan dalam mode tampilan kustom.
		Menyimpan nilai yang ditunjukkan pada LCD.
DATA	Tombol DATA HOLD	Menekan tombol ini setidaknya selama 2 dtk. akan menonaktifkan semua operasi utama untuk mencegah kesalahan operasi selama pengukuran.
SAVE	Tombol SAVE	Menyimpan data yang diukur.

• Indikasi tanpa masukan

Jika tidak ada tegangan dan arus yang dimasukkan, indikasi pada LCD adalah sebagai berikut. Lihat "6-5-2 Indikasi di atas rentang/Indikasi batang" dalam panduan ini.

6.1 Layar tampilan Konfigurasi Pengkabelan

Layar pengaktifan (atau layar setelah pengaturan ulang sistem) yang terkait dengan setiap konfigurasi pengkabelan tercantum di bawah ini.

Saat memutar tombol Fungsi dari "OFF" ke rentang W, layar pengukuran berikut muncul.

• 4 kabel tiga fase "3P4W" (16 layar)

		Layar A	Layar B	Layar C	Layar D	Layar E	Layar F	Layar G	Layar H
	Atas	V	V1	V2	V3				
Layar 1	Tengah	А	A1	A2	AЗ	—	—	—	—
	Bawah	Р	P1	P2	P3				
	Atas	Р	P1	P2	P3				
Layar 2	Tengah	S	S1	S2	S3	—	—	—	—
	Bawah	PF	PF1	PF2	PF3				
	Atas	V1	A1	P1	PF1	S1	Q1	f	VL12
Layar 3	Tengah	V2	A2	P2	PF2	S2	Q2	In	VL23
	Bawah	V3	A3	P3	PF3	S3	Q3	-	VL31

• 3 kabel tiga fase (3 sensor penjepit) "3P3W3A" (15 layar)

		Layar A	Layar B	Layar C	Layar D	Layar E	Layar F	Layar G
	Atas	V	V1	V2	V3			
Layar 1	Tengah	А	A1	A2	A3	—	—	—
	Bawah	Р	P1	P2	P3			L
	Atas	Р	P1	P2	P3			
Layar 2	Tengah	S	S1	S2	S3	—	—	—
	Bawah	PF	PF1	PF2	PF3			
	Atas	V1	A1	P1	PF1	S1	Q1	f
Layar 3	Tengah	V2	A2	P2	PF2	S2	Q2	—
	Bawah	V3	A3	P3	PF3	S3	Q3	—

• 3 kabel fase tunggal "1P3W", 3 kabel tiga fase "3P3W" (13 layar)

_		Layar A	Layar B	Layar C	Layar D	Layar E	Layar F	Layar G
	Atas	V	V1	V2	-			
Layar 1	Tengah	А	A1	A2	_	-	-	—
	Bawah	Р	P1	P2				
	Atas	Р	P1	P2				
Layar 2	Tengah	S	S1	S2	—	—	—	—
	Bawah	PF	PF1	PF2				
	Atas	V1	A1	P1	PF1	S1	Q1	f
Layar 3	Tengah	V2	A2	P2	PF2	S2	Q2	—
	Bawah	-	-	-	-	-	-	-

• 2 kabel fase tunggal (3ch) "1P2W (3ch)"(15 layar)

		Layar A	Layar B	Layar C	Layar D	Layar E	Layar F	Layar G
	Atas	V	V	V	V			
Layar 1	Tengah	А	A1	A2	AЗ	_	_	—
	Bawah	Р	P1	P2	P3			L
	Atas	Р	P1	P2	P3			
Layar 2	Tengah	S	S1	S2	S3	—	—	—
	Bawah	PF	PF1	PF2	PF3			
	Atas	V	A1	P1	PF1	S1	Q1	f
Layar 3	Tengah	—	A2	P2	PF2	S2	Q2	—
	Bawah	—	A3	P3	PF3	S3	Q3	—

• 2 kabel fase tunggal (2ch) "1P2W (2ch)" (13 layar)

		Layar A	Layar B	Layar C	Layar D	Layar E	Layar F	Layar G
	Atas	V	V	V				
Layar 1	Tengah	Α	A1	A2	—	—	—	—
	Bawah	Р	P1	P2				
	Atas	Р	P1	P2				
Layar 2	Tengah	S	S1	S2	—	—	—	—
	Bawah	PF	PF1	PF2				
	Atas	V	A1	P1	PF1	S1	Q1	f
Layar 3	Tengah	—	A2	P2	PF2	S2	Q2	—
	Bawah	—	—	—	-	—	—	—

• 2 kabel fase tunggal (1ch) "1P2W (1ch)" (9 layar)

		Layar A	Layar B	Layar C	Layar D	Layar E	Layar F	Layar G
	Atas	V						
Layar 1	Tengah	А	_	-	—	—	-	—
	Bawah	Р						
	Atas	Р						
Layar 2	Tengah	S	_	-	—	—	-	—
	Bawah	PF						
	Atas	V	А	Р	PF	S	Q	f
Layar 3	Tengah	—	—	—	—	—	—	—
	Bawah	—	—	—	—	—	—	—

CATATAN

* Parameter pada setiap layar dapat diubah.

Lihat "6-3 Menyesuaikan tampilan" dalam panduan ini.

6.2 Memilih/mengubah layar tampilan

Layar tampilan diklasifikasikan sebagai berikut. Tabel berikut juga digunakan dalam bagian "**6-3 Menyesuaikan tampilan**".

	Layar A	Layar B	Layar C	Layar D	Layar E	Layar F	Layar G
Layar 1	Layar 1A	Layar 1-B	Layar 1-C	Layar 1-D	-	Ι	Ι
Layar 2	Layar 2-A	Layar 2-B	Layar 2-C	Layar 2-D	Ι	Ι	Ι
Layar 3	Layar 3-A	Layar 3-B	Layar 3-C	Layar 3-D	Layar 3-E	Layar 3-F	Layar 3-G

* Dalam kasus 2 kabel fase tunggal (1ch), layar berikut tidak muncul: 1-B, 1-C, 1-D, 2-B, 2-C, 2-D

* Dalam kasus 2 kabel fase tunggal (2ch), 3 kabel fase tunggal, dan 3 kabel tiga fase, layar berikut tidak muncul:

1-D dan 2-D

• Memilih layar tampilan

Setelah memutar Tombol Fungsi dari "OFF" ke rentang **W**, Layar 1-A akan ditampilkan. Gunakan tombol Kursor untuk memilih layar lain.

$\blacksquare \blacktriangleright$	Memilih dari Layar A hingga G.
	Memilih dari Layar 1 hingga 3.

CATATAN

Mematikan instrumen atau mengubah konfigurasi kabel ("**Pengaturan 01**") pada rentang **SET UP** akan mengembalikan layar 1-A.

• Memilih layar tampilan

Contoh tampilan

Berikut ini adalah contoh tampilan dengan konfigurasi 4 kabel tiga fase.

6.3 Menyesuaikan tampilan

Parameter yang ditampilkan di baris atas/tengah/bawah Layar 1 dan 2 dapat disesuaikan. Layar 3 tidak dapat disesuaikan.

Contoh

* Ini adalah layar pengaktifan atau layar yang telah disesuaikan sebelumnya yang ditampilkan di sini. Setelah pengaturan ulang sistem, layar pengaktifan ditampilkan. Dalam contoh di atas, layar pengaktifan ditampilkan.

Menyesuaikan

1 Tekan tombol ENTER baik di layar 1 atau 2, untuk masuk ke mode tampilan khusus.

Parameter ditampilkan di baris atas (misalnya, nilai awal: Layar 1/V (Tegangan), Layar 2/P (Daya aktif)) _____akan berkedip.

- Pilih baris yang akan disesuaikan dengan tombol kursor ATAS atau BAWAH dan parameter yang akan dipilih dengan tombol kursor KIRI atau KANAN.
- 4 Saat menyesuaikan baris lainnya, pilih baris dan parameter dengan cara yang sama.

 ${\sf 5}$ Pilih parameter apa pun yang ingin Anda tampilkan di setiap baris dan tekan tombol ${\sf ENTER}$.

CATATAN

- * "f" dapat disesuaikan hanya di baris atas, dan "In" hanya dapat ditampilkan di baris tengah. (Jika konfigurasi pengkabelan adalah 4 kabel tiga fase)
- * Saat menekan tombol ENTER saat berada di Layar 3, instrumen akan menampilkan mode kustom Layar 1-A.
- * Penyesuaian tidak dapat dilakukan selama pengukuran integrasi/demand saat survei sedang berlangsung. Hal ini berlaku juga untuk mode siaga integrasi/demand.
- * Setelah sistem diatur ulang, layar pengaktifan muncul.
- * Menekan tombol **ESC** selama mode tampilan khusus mengembalikan parameter asli yang ditampilkan.

6.4 Menyimpan data (nilai sesaat)

Menekan tombol SAVE pada rentang W selama pengukuran menyimpan semua parameter yang diukur pada saat penyimpanan. Ini adalah operasi satu langkah manual.

Data dapat disimpan di dua lokasi berikut:

- * Kartu SD * Memori internal
- : Maks. 511 file dapat disimpan.
- nal : Maks. 4 file dapat disimpan.

Data disimpan ke kartu SD secara otomatis ketika kartu SD telah dimasukkan. Jika kartu SD belum dimasukkan, data secara otomatis disimpan ke memori internal.

6.4.1 Prosedur Penyimpanan

1 Tekan tombol SAVE saat berada di rentang W

2 Layar Nomor file muncul, dan data terukur sesaat akan disimpan.

(Nomor file diberikan secara otomatis.)

3 File yang dipilih dan dibuka ditampilkan pada layar pengukuran.

 $rac{4}{4}$ Data pengukuran selanjutnya dapat disimpan dengan menekan tombol SAVE dengan file telah dibuka.

Menutup file. = Setelah pengumpulan data selesai, file harus ditutup. Atur tombol Fungsi ke rentang mana pun selain "OFF" dan W.(misalnya, WIRING CHECK)

Setiap kali tombol SAVE ditekan; data terukur disimpan dalam file yang sama. Untuk menyimpan data ke file lain (hanya jika kartu SD digunakan), tekan tombol SAVE lagi pada rentang W. Kemudian ulangi prosedur penyimpanan.

CATATAN

- * Jika tombol Fungsi diatur ke posisi OFF sebelum menutup file, file tetap terbuka dan tidak disimpan. Pastikan untuk mengaturnya ke posisi lain selain OFF dan W, sehingga menutup file.
- * Jika tombol SAVE ditekan terus-menerus (2 kali atau lebih dalam 1 detik), data pengukuran mungkin tidak disimpan dengan benar.
- * Nomor file menjadi "001" ketika;
 - (1) nomor file telah melebihi 999
 - (2) setelah pengaturan ulang sistem
 - * Jika ada no. file yang sama, yang lama akan ditimpa.

6.4.2 Keterbatasan penyimpanan

Data tidak dapat disimpan dengan menekan tombol SAVE selama pengukuran ketika:

<mark><Kartu SD></mark>

- * ketika jumlah file yang dibuka melebihi 511.
- * ketika kapasitas memori kartu SD telah terlampaui

FULL muncul dan data selanjutnya tidak dapat disimpan. Untuk menyimpan data lebih lanjut, file yang disimpan sebelumnya sebaiknya dihapus melalui PC atau dengan menghapus semua data di kartu SD dengan menggunakan "**Pengaturan 19**". (Lihat bagian 4 panduan ini.)

<mark><Memori internal></mark>

- * ketika jumlah file yang dibuka melebihi 4.
- * ketika kapasitas memori internal telah terlampaui.

FULL muncul dan data selanjutnya tidak dapat disimpan. Untuk menyimpan data lebih lanjut, file yang disimpan sebelumnya harus dihapus dengan menggunakan "**Pengaturan 21**". (Lihat bagian 4 panduan ini.)

6.4.3 Parameter yang direkam

• Parameter disimpan (tergantung pada setiap konfigurasi kabel)

Parameter berikut disimpan.

Parameter pengukuran/penghitungan							
Tegangan (RMS)	Vi: Tegangan per fase						
Arus (RMS)	Ai: Arus per fase						
Daya aktif	P : Daya aktif total	Pi : Daya aktif per fase					
Daya reaktif	Q : Daya reaktif total	Qi : Daya reaktif per fase					
Daya nyata	S : Daya nyata total	Si : Daya nyata per fase					
Faktor daya	PF : Faktor daya dari keselı	uruhan sistem					
	PFi: Faktor daya per fase						
Frekuensi	f : Frekuensi V1						
Arus netral	In : Arus Netral						

* i = 1, 2, 3

• Format dan nama file

Data disimpan dalam format KEW, dan nama file ditetapkan secara otomatis sebagai berikut:

Contoh

Setelah file diunduh (kartu SD atau memori internal), jika file dibuka dengan perangkat lunak aplikasi spreadsheet (menggunakan format KEW, misalnya Microsoft Excel), tampilan spreadsheet-nya adalah sebagai berikut:

ID FILE		630	5					- model "6305"				
VERSI		1_01						Versi perangkat lı				ak
NOMOR SERI		0123	84567		•			s/n				
ALAMAT MAC		00_	11_22_	.33_44	4_55 <			Alan	nat B	lueto	oth	
NOMOR ID		00-0	001					Pen	gatur	an 23	3	
KONDISI								Tida	k ada	a		
PENGKABELAN		3P4	N					- Pengaturan 01				
RENTANG VOLT		300	V		•			Pengaturan 02			2	
RASIO VT		1,00						Pen	an OS	5		
JENIS SENSOR		8125	5					Pengaturan 03				
RENTANG ARUS		500	A					Pengaturan 04				
RASIO CT		1,00						Pen	gatur	an OB	3	
INTERVAL								Tida	k ada	a		
MULAI					•			Tidak ada				
TARGET DEMAND					•			- Tidak ada				
INTERVAL DEMAND	INTERVAL DEMAND							Tida	k ada	a		
			1	1						1	1	
TANGGAL	WAKTU		V1	V2	V3	A1	A2	A3	Р	P1	P2	P

	1/-	ING	GAL		WAKI	U		VI	٧Z	VЗ	AI	AZ	Ъ	Р	PI	PZ	
*1	20	112/	01/10		12:34:	56											
*2	20	12/	01/10		12:35:0	00											
*3																	
1																	
Р	P	F1	PF2	PF3	S	S1	S2	S3	Q	Q1	Q2	Q3	f	In			

*1: ini adalah data yang disimpan ketika tombol SAVE ditekan untuk pertama kalinya.

*2: ini adalah titik data kedua yang disimpan ketika tombol SAVE ditekan lagi ketika file masih terbuka.
 *3: ini adalah titik data berikutnya yang disimpan setiap kali tombol SAVE ditekan ketika file masih

s: ini adalah titik data berikutnya yang disimpan setiap kali tombol **SAVE** ditekan ketika file masih terbuka.

Data akan ditampilkan dalam format eksponensial. (Misalnya, ketika V1 adalah 100,1V, "1,001E+2").

6.5 Rentang dan Indikasi di atas rentang

6.5.1 Rentang

Pengaturan tersebut menentukan rentang untuk setiap parameter pengukuran, yaitu: Rentang tegangan ("**Pengaturan 02**"), Rentang arus ("**Pengaturan 04**), Rasio VT ("**Pengaturan 05**"), dan Rasio CT ("**Pengaturan 06**"). (Rentang tetap)

• Tegangan V: V (rata-rata setiap fase), V1/V2/V3 (setiap fase), maks 4 digit

Rentang 150/300/600V					
Rentang tegangan x rasio VT x 120%	Posisi titik Digit & Desimal				
0,3600 - 0,9999 V	0,9999 V				
1,000 - 9,999 V	9,999 V				
10,00 - 99,99 V	99,99 V				
100,0 - 999,9 V	999,9 V				
1,000k - 9,999 kV	9,999 kV				
10,00k - 99,99 kV	99,99 kV				
100,0k - 999,9 kV	999,9 kV				
1,000M - 7,200 MV	7,200 MV				

• Arus A: A (rata-rata setiap fase), A1/A2/A3 (setiap fase), maks. 4 digit

Sensor penjepit 50A Sensor penjepit 100A Sensor penjepit 200A Sensor penjepit 500A Sensor penjepit 1000A Sensor penjepit 3000A : rentang 1 / 5 / 10 / 25 / 50A : rentang 2 / 10 / 20 / 50 / 100A : rentang 4 / 20 / 40 / 100 / 200A : rentang 10 / 50 / 100 / 250 / 500A : rentang 50/100/200/500/1000A : rentang 300 / 1000 / 3000A

Rentang arus x rasio CT x 120%	Posisi titik Digit & Desimal
0.0120 - 0.0999A	0.0999 A
0.1000 - 0.9999A	0.9999 A
1.000 - 9.999 A	9.999 A
10.00 - 99,99 A	99.99 A
100.0 - 999,9 A	999.9 A
1.000k - 9.999 kA	9.999 kA
10.00k - 99.99 kA	99.99 kA
100.0k - 999.9 kA	999.9 kA
1.000M - 9.999 MA	9.999 MA
10.00M - 36.00 MA	36.00 MA

• Daya aktif P/Daya reaktif Q/Daya nyata S

: P1/P2/P3, Q1/Q2/Q3, S1/S2/S3, maks. 4 digit

: P, Q, S (total), maks. 5 digit

Daya (*) x rasio VT x rasio CT x 120%	Posisi titik Digit & Desimal
0,0030 - 0,0099 W/Var/VA	0,0099 W/Var/VA
0,0100 - 0,0999 W/Var/VA	0,0999 W/Var/VA
0,1000 - 0,9999 W/Var/VA	0,9999 W/Var/VA
1,000 - 9,999 W/Var/VA	9,999 W/Var/VA
10,00 - 99,99 W/Var/VA	99,99 W/Var/VA
100,0 - 999,9 W/Var/VA	999,9 W/Var/VA
1,000k - 9,999k W/Var/VA	9,999 k W/Var/VA
10,00k - 99,99k W/Var/VA	99,99 k W/Var/VA
100,0k - 999,9k W/Var/VA	999,9 k W/Var/VA
1,000M - 9,999M W/Var/VA	9,999 M W/Var/VA
10,00M - 99,99M W/Var/VA	99,99 M W/Var/VA
100,0M - 999,9M W/Var/VA	999,9 M W/Var/VA
1,000G - 9,999G W/Var/VA	9,999 G W/Var/VA
10,00G - 99,99G W/Var/VA	99,99 G W/Var/VA
100,0G - 999,9G W/Var/VA	999,9 G W/Var/VA
1000G - 180000G W/Var/VA	1800000G W/Var/VA

* Tabel menunjukkan nilai daya yang sesuai dengan setiap rentang tegangan dan arus.

Rentang	Rentang arus								
tegangan	1,000A	2,000A	4,000A	5,000A	10,00A	20,00A	25,00A	40,00A	
150,0V	150,0	300,0	600,0	750,0	1,500k	3,000k	3,750k	6,000k	
300,0V	300,0	600,0	1,200k	1,500k	3,000k	6,000k	7,500k	12,00k	
600,0V	600,0	1,200k	2,400k	3,000k	6,000k	12,00k	15,00k	24,00k	
	50,00A	100,0A	200,0A	250,0A	300,0A	500,0A	1000A	3000A	
150,0V	7,500k	15,00k	30,00k	37,50k	45,00k	75,00k	150,0k	450,0k	
300,0V	15,00k	30,00k	60,00k	75,00k	90,00k	150,0k	300,0k	900,0k	
600,0V	30,00k	60,00k	120,0k	150,0k	180,0k	300,0k	600,0k	1,800G	

Nilai daya yang tercantum di atas berlaku untuk 2 kabel fase tunggal (1ch). Daya untuk sistem 2 kabel fase tunggal (2ch)/3 kabel fase tunggal/3 kabel tiga fase akan menjadi dua kali lipat dari nilai di atas. Daya total masing-masing fase dari sistem 2 kabel fase tunggal (3ch)/4 kabel tiga fase akan menjadi tiga kali lipat dari nilai di atas.

• Faktor daya PF: PF (seluruh sistem), PF1/PF2/PF3 (setiap fase), 4 digit

Rentang tampilan	
-1,000 - 1,000 PF	

• Frekuensi f: 3 digit

Rentang tampilan	
40,0 - 70,0 Hz	

• Arus netral In (A) (hanya untuk sistem 4 kabel tiga fase): maks. 5 digit

Titik desimal dan satuannya sama dengan untuk Arus.

A PERINGATAN

- Jika indikasi di atas rentang muncul pada rentang maksimum yang dipilih, ini berarti bahwa masukan melebihi masukan maksimum yang diizinkan untuk instrumen. Jangan pernah menerapkan masukan tersebut pada instrumen.
- Ketika nilai terukur melebihi masukan maksimum yang diizinkan, penggunaan VT/CT direkomendasikan. Lihat "**5-3 VT/CT**" dan ikuti panduan petunjuk.

🛆 PERHATIAN

• Ketika indikasi di atas rentang muncul pada layar, penghitungan masih dilakukan. Namun, akurasinya tidak dapat dijamin.

Indikasi di atas rentang

Indikasi di atas rentang muncul ketika parameter (Tegangan V, Arus A, Daya aktif P, Daya reaktif Q, Daya nyata S) melebihi kondisi berikut.

- * Tegangan V (V): > Rentang tegangan yang dipilih x rasio VT x 130% (misalnya: ketika rentang tegangan 300V dan rasio VT adalah 1: 390,0V)
- * Arus A (A): > Rentang arus x rasio CT x 130%

(misalnya: ketika rentang arus yang dipilih adalah 200A dan rasio CT adalah 2: 520,0A)

* Daya aktif P (W)/Daya reaktif Q (Var)/Daya nyata S (VA)

: > Daya x rasio VT x rasio CT x 130%

(misalnya: ketika daya 60kW, rasio VT adalah 1 dan rasio CT adalah 2: 156,0kW)

< Indikasi 🚺 >

Ketika salah satu kondisi di atas terpenuhi, "🔐 " ditampilkan.

< Tanda 🚺 >

Ketika "🔐 🥤 muncul untuk indikasi di atas rentang untuk V1, V2 dan V3 mana pun, ini ditampilkan pada LCD. Jika tanda 🔽 muncul pada semua layar pengukuran pada posisi 👿.

< Tanda 🗛 🔁 >

Ketika "🔐" muncul untuk indikasi di atas rentang untuk A1, A2 dan A3 mana pun, ini ditampilkan pada LCD. Jika tanda 📶 muncul pada semua layar pengukuran pada posisi 🛛

Indikasi batang

Penghitungan dan pengukuran yang dilakukan alat ini didasarkan pada tegangan dan frekuensi V1. Jika nilai V1 kurang dari 5% rentang yang dipilih atau jika frekuensi tidak berada dalam rentang 20–70 Hz, semua parameter (kecuali arus) tidak dapat dihitung dan ditampilkan. Dalam kasus seperti ini, angka numerik akan digantikan dengan indikasi batang **("- - - -")** seperti yang ditunjukkan:

CATATAN:

* Tanda Vol atau Aol ditampilkan di setiap layar pengukuran saat pengukuran dilakukan pada rentang Wh atau DEMAND.

7. Pengukuran nilai integrasi

Rentang **SET UP** : Mengonfirmasi pengaturan.

(lihat "Bagian 4: Pengaturan")

Indikasi

Parameter Pengukuran/Penghitungan				
Energi listrik aktif	WP : Energi listrik aktif total	W/b		
(konsumsi)	WP1/WP2/WP3 : Energi listrik aktif per fase	VVII		
Energi listrik nyata	WS : Energi listrik nyata total			
(konsumsi)	WS1/WS2/WS3 : Energi listrik nyata per fase	VAN		
Waktu integrasi yang terlewati	WAKTU : Jam; Mnt.; Dtk. Jam; Mnt. Jam	-		

CATATAN:

- * Parameter di atas berbeda tergantung pada setiap konfigurasi kabel.
- * Jika V1 berada di luar rentang pengukuran, parameter lain tidak dapat diukur atau dihitung.
- * Hanya energi listrik yang dikonsumsi yang ditampilkan di layar.

Hanya energi regeneratif yang akan disimpan. Lihat "7.5.3 Menyimpan data" dalam panduan ini. * Menampilkan perubahan waktu dengan waktu integrasi yang telah berlalu.

•Sebelum melakukan pengukuran

•Pengaturan untuk pengukuran integrasi

Selain pengaturan dasar, pengaturan berikut diperlukan untuk pengukuran integrasi.

"Pengaturan 09" Interval rekaman

"Pengaturan 10" Rekam periode waktu khusus atau rekam tanpa akhir

"Pengaturan 11" Pengaturan periode waktu Pengaturan waktu

"Pengaturan 12" Pengaturan periode waktu Pengaturan tanggal

"Pengaturan 13" Awal dari pengukuran berkelanjutan

"Pengaturan 14" Akhir dari pengukuran berkelanjutan

Tombol

	Kunci	Deskripsi				
START	Tombol START/STOP	Menekan tombol ini akan memulai/menghentikan pengukuran integrasi secara manual atau otomatis.				
	Tombol LAMPU LATAR BELAKANG	Menghidupkan / mematikan lampu latar belakang LCD.				
	Tombol kursor ATAS Tombol kursor BAWAH	Mengubah konten tampilan.				
	Tombol kursor KIRI Tombol kursor KANAN	Mengubah konten tampilan.				
ENTER	Tombol <mark>ENTER</mark>	Mengatur ulang nilai integrasi. Mengonfirmasi penghapusan file dalam memori internal.				
ESC	Tombol <mark>ESC</mark>	Mengatur ulang nilai integrasi.				
		Menyimpan nilai yang ditunjukkan pada LCD.				
DATA Hold	Tombol <mark>DATA HOLD</mark>	Menekan tombol ini setidaknya selama 2 dtk. akan menonaktifkan semua operasi utama untuk mencegah kesalahan operasi selama pengukuran.				
SAVE	Tombol SAVE	Tidak ada penggunaan				

CATATAN:

* Fungsi penangguhan data dinonaktifkan saat instrumen dalam mode siaga untuk pengukuran integrasi.

7-1 Inisiasi survei

Ada dua cara untuk memulai survei.

- (1) Pengoperasian manual
 - Menekan tombol START/STOP pada rentang Wh selama 2 dtk. atau lebih akan memulai pengukuran.
- (2) Pengoperasian otomatis (pengaturan awal waktu dan tanggal)

Atur waktu dan tanggal mulai pada rentang **SET UP** ("**Pengaturan 10**"), lalu tekan tombol **START/STOP** pada rentang **Wh**. Instrumen masuk ke mode siaga, dan pengukuran dimulai pada waktu dan tanggal yang telah ditentukan.

•Pengukuran manual

1 Tekan tombol START/STOP pada rentang Wh selama 2 dtk. atau lebih.

Layar nomor file ditampilkan sekitar 1 dtk. dan diikuti oleh layar pengukuran. Lalu survei dimulai. Saat ini, indikator status LED menyala.

Pengukuran otomatis pada waktu dan tanggal yang sudah ditetapkan sebelumnya

- 1 Waktu dan tanggal mulai yang sudah ditetapkan sebelumnya pada rentang SET UP.

2 Atur tombol Fungsi ke rentang **Wh**, lalu tekan tombol **START/STOF**. 3 Layar nomor file ditampilkan sekitar 1 dtk. (file dibuka), diikuti oleh layar pengukuran. Instrumen beralih ke mode siaga. Indikator status LED berkedip saat instrumen dalam mode siaga.

4 Survei dimulai pada waktu dan tanggal yang telah ditentukan sebelumnya, dan indikator status LED berhenti berkedip dan menyala secara permanen. Indikator status LED menyala

CATATAN:

- * Waktu dan tanggal mulai harus ditetapkan setelah waktu saat ini sedemikian rupa sehingga memberikan waktu yang cukup bagi pengguna untuk menyelesaikan semua pengaturan sebelum survei dimulai.
- st Jika waktu dan tanggal mulai diatur sebelum waktu saat ini, pengukuran akan segera dimulai setelah menekan tombol START/STOP
- st Jika waktu dan tanggal mulai yang sudah ditentukan sebelumnya diatur setelah waktu dan tanggal berhenti yang telah ditentukan, survei tidak dapat dilakukan.
- * Meskipun waktu mulai dan berhenti telah diatur sebelumnya dan instrumen berada dalam mode siaga, menekan tombol START/STOP setidaknya 2 dtk. akan melepaskan mode siaga dan memulai survei dalam mode Manual. Hal ini menyebabkan pengaturan waktu dan tanggal mulai/berhenti menjadi tidak efektif.

7.2 Penutupan Survei

Ada dua cara untuk menutup survei.

(1) Pengoperasian manual

Menekan tombol **START/STOP** pada rentang **Wh** selama 2 dtk. atau lebih akan menutup survei. Tindakan ini juga menutup survei yang dimulai secara otomatis pada waktu dan tanggal yang telah ditentukan. Indikator status LED padam. Survei kemudian ditutup.

(2) Pengoperasian otomatis (pengaturan awal waktu dan tanggal)

Hal ini dapat dilakukan dengan mengatur waktu dan tanggal berhenti pada rentang **SET UP**. Indikator status LED padam. Survei kemudian ditutup.

CATATAN

- * Pengukuran dihentikan dengan mematikan instrumen (atur tombol fungsi ke posisi "OFF"), tetapi data pengukuran akan hilang. Pengukuran harus dimulai secara manual (menekan tombol START/STOP) atau atur pengatur waktu (tentukan waktu dan tanggal).
- * Memulai survei secara manual membuat waktu dan tanggal berhenti yang telah ditentukan menjadi tidak efektif. Survei harus ditutup secara manual dalam kasus ini.
- * Jika durasi survei lebih pendek dari interval integrasi ("**Pengaturan 09**"), data yang diukur tidak akan disimpan.
- * Jika waktu dan tanggal mulai yang sudah ditentukan sebelumnya diatur setelah waktu dan tanggal berhenti <u>yang telah dit</u>entukan, survei tidak dapat dilakukan.
- * Menekan tombol **START/STOP** selama 2 dtk. atau lebih akan melepaskan mode siaga. Indikator status LED padam.

7.3 Mengatur ulang nilai integrasi

Ada dua metode untuk mengatur ulang nilai dan periode integrasi dari pengukuran sebelumnya.

- * Tekan tombol ESC pada rentang Wh selama 2 dtk. atau lebih.
- * Pengaturan ulang sistem

Nilai total yang terintegrasi akan diatur ulang saat memulai rekaman baru.

CATATAN

 st Nilai integrasi tidak dapat diatur ulang selama pengukuran atau saat instrumen dalam mode siaga.

7-4 Mengubah tampilan

Tampilan dapat diubah sebagai berikut dengan tombol Kursor. Parameter yang ditampilkan berbeda tergantung pada setiap konfigurasi pengkabelan yang dipilih. Setiap parameter yang dihitung, meskipun tidak ditampilkan di layar, sebenarnya sedang dihitung.

•Mengubah tampilan (Konfigurasi 4 kabel tiga fase)

•Indikasi di setiap konfigurasi pengkabelan

Pengkabelan	Ditampilkan	Konten yang ditampilkan					
("Pengaturan 01")	pada	Layar1	Layar2	Layar3	Layar4		
	Atas	WAKTU					
1P2W (1ch)	Tengah	WP	-	-	-		
	Bawah	WS					
1P2W (2ch)	Atas	WAKTU	WAKTU	WAKTU			
1P3W	Tengah	WP	WP1	WP2	-		
3P3W	Bawah	WS	WS1	WS2			
1P2W (3ch)	Atas	WAKTU	WAKTU	WAKTU	WAKTU		
3P3W3A	Tengah	WP	WP1	WP2	WP3		
3P4W	Bawah	WS	WS1	WS2	WS3		

Pesan berikut ditampilkan di layar sesuai dengan masing-masing konfigurasi pengkabelan.

WAKTU	: Waktu integrasi yang terlewati
WP	: Energi listrik aktif total
WP1/WP2/WP3	: Energi listrik aktif per fase
WS	: Energi listrik nyata total
WS1/WS2/WS3	: Energi listrik nyata per fase

7.5 Menyimpan data

Ketika integrasi atau pengukuran demand dimulai, data yang diukur akan disimpan secara otomatis. Ada dua lokasi di mana data dapat disimpan.

- * Kartu SD : Maks. 511 file dapat disimpan.
- * Memori internal : Maks. 4 file dapat disimpan.

Data disimpan ke kartu SD secara otomatis ketika kartu SD telah dimasukkan sebelum instrumen dihidupkan. Jika kartu SD belum dimasukkan, data disimpan secara otomatis ke memori internal.

7.5.1 Prosedur penyimpanan

- * Ketika survei dimulai (secara manual atau otomatis), file dibuka.
- * Data disimpan pada akhir setiap interval integrasi ("**Pengaturan 09**").

- * Ketika survei ditutup (secara manual atau otomatis), file ditutup
- * Semua parameter yang direkam pada setiap titik penyimpanan data disimpan ke satu file.

CATATAN

- * Jangan pernah mengatur tombol Fungsi ke posisi OFF selama survei, jika tidak, survei akan hilang.
- * Nomor file menjadi "001" ketika;
 - (1) jika nomor file telah melebihi 999
 - (2) setelah pengaturan ulang sistem
 - * Jika ada no. file yang sama, yang lama akan ditimpa.

7.5.2 Keterbatasan penyimpanan

•Keterbatasan penyimpanan (sebelum memulai survei)

Dalam kasus berikut, survei tidak dapat dimulai (secara manual atau otomatis) dengan menekan tombol START/STOP.

< Jika data disimpan ke kartu SD >

* Ketika 511 file telah disimpan ke kartu SD; tanda FULD muncul, dan data selanjutnya tidak dapat disimpan.

Beberapa file dapat dihapus melalui PC, jika tidak, semua file yang tersimpan di kartu SD dapat dihapus menggunakan "**Pengaturan 19**" dari Bagian 4 dalam panduan ini.

< Jika data disimpan ke memori internal >

* Ketika 4 file telah disimpan ke memori internal; tanda **FULC** muncul, dan data selanjutnya tidak dapat disimpan.

•Keterbatasan penyimpanan (selama survei)

Ketika kapasitas kartu SD atau memori internal telah terlampaui selama survei; pengukuran berlanjut tetapi tanda fun muncul di layar tampilan dan data selanjutnya tidak akan disimpan.

Tekan tombol <mark>START/STOP</mark> selama 2 dtk. atau lebih dan hentikan survei satu kali. Lihat halaman sebelumnya dan hapus file yang tidak diperlukan.

CATATAN

* Untuk detail lebih lanjut tentang kapasitas kartu SD dan memori internal, lihat "**Bagian 9: Kartu SD/Memori internal**" dalam panduan ini.

7.5.3 Parameter yang Direkam

Tergantung pada konfigurasi pengkabelan yang dipilih, parameter berikut direkam:

•Parameter yang akan disimpan

		Parameter yang	akan disimpa	an
Tegangan (RMS)	Vi Vi max Vi min Vi avg	: tegangan setiap fase : nilai Vi maks. : nilai Vi min. : nilai Vi rata-rata		
Arus (RMS)	Ai Ai max Ai min Ai avg	: arus setiap fase : nilai Ai maks. : nilai Ai min. : nilai Ai rata-rata		
Daya aktif	P P max P min P avg	: daya aktif total : nilai P maks. : nilai P min. : nilai P rata-rata		Pi : daya aktif dari setiap fase Pi max : nilai Pi maks. Pi min : nilai Pi min. Pi avg : nilai Pi rata-rata
Daya reaktif	Q Q max Q min Q avg	: daya reaktif total : nilai Q maks. : nilai Q min. : nilai Q rata-rata		Qi : daya reaktif dari setiap fase Qi max : nilai Qi maks. Qi min : nilai Qi min. Qi avg : nilai Qi rata-rata
Daya nyata	S S max S min S avg	: daya nyata total : nilai S maks. : nilai S min. : nilai S rata-rata		Si : daya nyata dari setiap fase Si max : nilai Si maks. Si min : nilai Si min. Si avg : nilai Si rata-rata
Faktor daya	PF PF max PF min PF avg	: faktor daya dari keseluru : nilai PF maks. : nilai PF min. : nilai PF rata-rata	uhan sistem	PFi : faktor daya dari setiap fase PFi max: nilai PFi maks. PFi min : nilai PFi min. PFi avg : nilai PFi rata-rata
Frekuensi	f f max f min f avg	: frekuensi V1 : nilai f maks. : nilai f min. : nilai f rata-rata	Arus netral	In : arus pada garis netral In max : nilai In maks. In min : nilai In min. In avg : nilai In rata-rata
Energi aktif (konsumsi) (regenerasi) (keseluruhan)	+WP +WPi -WP -WPi #WP #WPi	: total energi aktif (kons : energi aktif (konsumsi : total energi aktif (rege : energi aktif (regeneras : energi aktif total (kese : energi aktif (keseluruh	sumsi)) setiap fase merasi) si) setiap fase eluruhan) nan) setiap fa:	e
Energi nyata (konsumsi) (regenerasi) (keseluruhan)	+WS +WSi -WS -WSi #WS #WSi	: total energi nyata (kor : energi nyata (konsums : total energi nyata (reg : energi nyata (regenera : total energi nyata (kes : energi nyata (keseluru	nsumsi) si) setiap fase jenerasi) asi) dari setia seluruhan) uhan) dari set	e Ip fase iap fase
Energi reaktif (konsumsi)	+WQ	: total energi reaktif (ko	nsumsi)	
Nilai demand	#DEM TARGET	: total nilai demand : nilai demand target	#DEMi	: nilai demand dari setiap fase

* i = 1, 2, 3 di mana, "max." dan "avg." berarti nilai maksimum dan rata-rata selama suatu interval.

•Format dan nama file

Data terukur disimpan dalam format KEW, dan nama file ditetapkan secara otomatis.

Contoh data terukur

ID FILE	6305	◀	KEW "6305"
VERSI	1_01		Versi perangkat lunak
NOMOR SERI	01234567	◀	s/n
ALAMAT MAC	00_11_22_33_44_55	◀	Alamat Bluetooth
NOMOR ID	00-001	◀	Pengaturan 23
KONDISI	SELF	┥───	Tidak ada
PENGKABELAN	3P4W	◀	Pengaturan 01
RENTANG VOLT	300V	↓	Pengaturan 02
RASIO VT	1,00		Pengaturan 05
JENIS SENSOR	8125	◀	Pengaturan 03
RENTANG ARUS	500A	┥───	Pengaturan 04
RASIO CT	1,00	┥───	Pengaturan 06
INTERVAL	'30M	↓	Pengaturan 09
MULAI	yy/mm/dd hh:mm:ss	↓	Pengaturan 11 atau 13
TARGET DEMAND	100,0kW	←───	Pengaturan 15
INTERVAL DEMAND	30M	←───	Pengaturan 16

*Pengaturan 15 dan 16 tidak terkait dengan pengukuran integrasi.

								7				_
		WAKTU	WAKTU YANG	V1	V2	VЗ			Q3	f	In	
	TANGGAL		TERLEWATI				Δ					
1	2012/01/10	09:00:00	00000:30:00				\setminus					
2	2004/03/22	09:30:00	00001:00:00									
n							7	Γ				

Data akan ditampilkan dalam format eksponensial. (misalnya, 38672,1kWh, "3,86721E+7").

7.6 Digit yang Ditampilkan/Indikasi di atas rentang

Digit

* Energi listrik aktif WP, Energi listrik nyata WS (rentang otomatis)

: WP1/WP2/WP3, WS1/WS2/WS3 (setiap fase), maks. 6 digit : WP, WS (total), maks. 6 digit

Rentang ini ditetapkan secara otomatis tergantung pada nilai yang diukur. Titik desimal dan satuan diubah secara otomatis.

ι	Jnit: Wh	ı/VAh	Ketika nilainya melebihi 9999999G, segmen menjadi " DL ".
0.0000	_	00 0000	Namun, uata yang uisimpan tidak mitang.
100.000		<u> </u>	-
100,000		9999999	-
10.0000 k	-	99,9999 k	-
100.000 k	-	999.999 k	1
1000,00k	-	9999,99k	
10000,0k	-	99999,9k	
100000 k	-	999999 k	
1000,00M	-	9999,99M	
10000,0M	-	99999,9M	
100000 M	-	999999 M	
1000,00G	-	9999,99G	
10000,0G	-	99999,9G	
100000 G	-	999999 G]

* Waktu berlalu **WAKTU**

Waktu yang ditampilkan berubah menjadi waktu sebagai berikut.

Waktu berlalu				
00:00:00 menjadi 99:59:59 jam: menit: detik				
100	menjadi	999999	jam	

•Indikasi di atas rentang/lainnya

- * Ketika tegangan masukan dan arus melebihi jumlah tampilan maksimal, tanda Von atau Aon ditampilkan pada LCD. Dalam hal ini, pengukuran yang akurat tidak dapat dilakukan.
- * Pada rentang W, bila P (daya aktif) ditunjukkan dengan garis "- - -", berarti kenaikan energi listrik tidak signifikan.

Lihat "6-5-2 Indikasi di atas rentang/Indikasi batang" dalam panduan ini.

8. Pengukuran nilai Demand

Jika tombol Fungsi diatur pada posisi berikut selama pengukuran Demand atau mode siaga Demand;

Rentang W	: Nilai sesaat ditampilkan.		
	(lihat " Bagian 6: Pengukuran nilai sesaat ")		
Rentang Wh	: Nilai sesaat ditampilkan.		
	Lihat " Bagian 7: Pengukuran nilai integrasi ")		
Rentang SE	TUP : Pengaturan ditampilkan.		
(lihat " Bagian 4: Pengaturan ")			

Indikasi

Item Pengukuran/Penghitungan	Unit
Nilai demand target	W
Nilai demand yang diprediksi	W
Nilai demand saat ini	W
Faktor muatan	%
Waktu yang tersisa untuk interval demand telah berlalu	-
Nilai demand maks. yang tercatat sejauh ini	W
Tanggal dan waktu ketika nilai demand maks. dicatat.	-

•Sebelum melakukan pengukuran

•Pengaturan hanya untuk pengukuran demand

Pengaturan dasar dan pengaturan berikut diperlukan untuk pengukuran demand.

"Pengaturan 09" Interval rekaman

"Pengaturan 10" Rekam periode waktu khusus atau rekam tanpa akhir

"Pengaturan 11" Pengaturan periode waktu Pengaturan waktu

"Pengaturan 12" Pengaturan periode waktu Pengaturan tanggal

"Pengaturan 13" Awal dari pengukuran berkelanjutan

"Pengaturan 14" Akhir dari pengukuran berkelanjutan

"Pengaturan 15" Target demand

"Pengaturan 16" Siklus pengukuran demand

"Pengaturan 17" Siklus peringatan demand

• Tombol

	Kunci	Deskripsi			
START	Tombol <mark>START/STOP</mark>	Menekan tombol ini akan memulai/menghentikan pengukuran permintaan secara manual atau otomatis.			
×	Tombol LAMPU LATAR BELAKANG	Menghidupkan/mematikan lampu latar belakang LCD.			
	Tombol <mark>kursor ATAS</mark> Tombol <mark>kursor BAWAH</mark>	Mengubah konten tampilan.			
	Tombol <mark>kursor KIRI</mark> Tombol <mark>kursor KANAN</mark>	Mengubah konten tampilan.			
ENTER	Tombol <mark>ENTER</mark>	Mengatur ulang nilai demand. Mengonfirmasi penghapusan file dalam memori internal.			
ESC	Tombol <mark>ESC</mark>	Mengatur ulang nilai demand.			
		Menyimpan nilai yang ditunjukkan pada LCD.			
DATA	Tombol <mark>DATA HOLD</mark>	Menekan tombol ini setidaknya selama 2 dtk. akan mengunci semua operasi utama untuk mencegah gangguan pengukuran			
SAVE	Tombol SAVE	Tidak ada penggunaan			

CATATAN

* Fungsi Data hold dinonaktifkan saat instrumen dalam mode siaga untuk pengukuran demand.

8.1 Pengukuran demand

Berikut ini contoh pengelolaan daya dengan memantau permintaan.

• Mengurangi daya rata-rata selama interval spesifik

Asumsikan intervalnya adalah 30 mnt.

Pada gambar di bawah, daya rata-rata selama Interval 1 diasumsikan sebesar 500 kW dan selama Interval 2 diasumsikan sebesar 600 kW.

Sekarang, asumsikan daya rata-rata selama 15 mnt. pertama (siklus inspeksi) dari Interval 2 adalah 600 kW. Daya rata-rata selama Interval 2 dapat dipertahankan pada 500 kW (sama seperti Interval 1) dengan mengurangi daya pada 15 menit terakhir. hingga 400 kW.

Katakanlah, daya rata-rata selama 15 mnt. pertama adalah 1000 kW, daya rata-rata selama 15 menit kedua harus 0 kW untuk mempertahankan daya rata-rata 500 kW.

• Pengukuran demand dengan instrumen ini

Dengan mengukur muatan, KEW 6305 dapat menampilkan daya rata-rata saat ini dan prediksi (nilai demand). Nilai-nilai ini terus diperbarui seiring berjalannya waktu selama interval tertentu.

Buzzer akan berbunyi dan lampu latar akan berkedip ketika nilai demand yang diprediksi melebihi nilai target demand setelah berlalunya siklus inspeksi yang telah ditentukan sebelumnya.

Nilai yang ditampilkan pada akhir interval (dalam hal ini, 30 menit) adalah daya rata-rata (**Nilai demand**) untuk interval.

Gambar di bawah ini menggambarkan hubungan antara: Nilai demand target, Nilai prediksi, Nilai demand saat ini, interval dan siklus inspeksi.

^{*} Dalam hal ini, nilai demand pada akhir interval adalah 500kW.

Nilai permintaan yang dihitung pada setiap interval berguna untuk manajemen daya per hari, bulan, atau tahun.

CATATAN

* Pembacaan meteran demand yang dipasang oleh perusahaan listrik dan KEW 6305 mungkin tidak sepenuhnya cocok karena adanya jeda waktu pada interval awal.

• Menyimpan nilai Demand

Nilai Demand akan disimpan pada interval yang telah ditentukan (Pengaturan 09).

Nilai demand akhir ditentukan pada akhir setiap siklus pengukuran demand (Pengaturan 16), dan akan diatur ulang secara otomatis. Nilai demand maksimum yang diukur pada setiap siklus demand akan disimpan dan ditampilkan pada LCD bersama dengan informasi waktu dan tanggal.

Berikut ini contoh status penyimpanan survei nilai demand dengan interval demand 10 menit, siklus demand 30 menit, dan durasi survei sekitar 3 jam.

8-2 Mengubah item yang ditampilkan

Ada 3 layar tampilan pada rentang **DEMAND**, dan layarnya umum untuk setiap konfigurasi pengkabelan.

• Layar dapat diubah dengan tombol Kursor sebagai berikut.

• Item yang Ditampilkan

Item yang ditampilkan

<Layar 1, Baris atas: Nilai demand target (W) > Diatur pada "Pengaturan 15". Atur nilai yang diinginkan.

<Layar 1, Baris tengah: Nilai demand yang diprediksi (W) > GUESS Nilai prediksi daya listrik rata-rata (nilai demand) setelah selang waktu pengukuran demand dengan muatan saat ini ditampilkan segera setelah pengukuran dimulai. Nilai prediksi dihitung secara berturut-turut ketika muatan berbeda.

Target

<Layar 1, Baris bawah & Layar 2, Baris bawah: Nilai demand saat ini (W) > Ini adalah Nilai Demand Saat Ini (lihat definisi) Present

<Layar 2, Baris atas: Sisa waktu > Ini adalah hitungan mundur, dalam penurunan 1 dtk. hingga akhir interval.

<Layar 2, Baris tengah: Faktor muatan (%) > Ini adalah faktor muatan (Lihat definisi).

<Layar 3, Baris atas & Baris tengah: Tanggal dan waktu > MAX Ini adalah waktu dan kapan demand maks. yang tercatat sejauh ini sejak awal survei diukur.

<Layar 3, Baris bawah: Nilai demand maks. (W) > MAX Nilai demand maks. yang diukur antara awal dan akhir pengukuran ditampilkan.

8-3 Inisiasi survei

Ada dua metode untuk memulai survei.

(1) Pengoperasian manual

Menekan tombol **START/STOP** pada rentang **DEMAND** setidaknya selama 2 dtk. akan memulai pengukuran.

(2) Operasi otomatis (waktu dan tanggal yang ditetapkan sebelumnya)

Atur waktu dan tanggal mulai pada rentang **SET UP**, lalu tekan tombol **START/STOP** pada rentang **DEMAND**. Instrumen masuk ke mode siaga, dan pengukuran dimulai pada waktu dan tanggal yang telah ditentukan.

- Untuk memulai pengukuran secara manual
- 1 Tekan tombol START/STOP pada rentang DEMAND setidaknya selama 2 dtk.
- Layar nomor File ditampilkan sekitar 1 dtk. (file dibuka), dan kemudian layar pengukuran ditampilkan. Setelah itu, pengukuran dimulai. Saat ini, indikator status LED menyala (HIJAU).

• Untuk memulai pengukuran secara otomatis pada waktu dan tanggal yang ditetapkan sebelumnya

1 Atur waktu dan tanggal mulai pada rentang <mark>SET UP</mark>.

2 Kemudian atur tombol Fungsi ke rentang DEMAND dan tekan tombol START/STOP.

3 Layar nomor File ditampilkan sekitar 1 dtk., dan diikuti oleh layar pengukuran. Instrumen masuk ke mode siaga untuk pengukuran. Indikator status LED berkedip saat instrumen dalam mode siaga.

 Pengukuran dimulai pada waktu dan tanggal yang telah ditentukan, dan indikator status LED berhenti

 berkedip dan tetap menyala selama survei berlangsung.

CATATAN

- * Waktu dan tanggal mulai harus ditetapkan setelah waktu saat ini sedemikian rupa sehingga memberikan waktu yang cukup bagi pengguna untuk menyelesaikan semua pengaturan sebelum survei dimulai.
- * Jika waktu dan tanggal mulai diatur sebelum waktu saat ini, pengukuran akan segera dimulai setelah menekan tombol START/STOP.
- * Jika waktu dan tanggal mulai yang telah ditentukan sebelumnya diatur setelah waktu dan tanggal berhenti yang telah ditentukan, pengukuran akan berhenti tepat setelah pengukuran dimulai.
- * Meskipun waktu mulai dan berhenti telah diatur sebelumnya dan instrumen berada dalam mode siaga, menekan tombol START/STOP setidaknya 2 dtk. akan melepaskan mode siaga dan memulai survei dalam mode Manual. Hal ini menyebabkan pengaturan waktu dan tanggal mulai/berhenti menjadi tidak efektif.

8-4 Penutupan survei

Ada dua metode untuk menutup survei.

- (1) Pengoperasian manual
 - Menekan tombol START/STOP pada rentang **DEMAND** setidaknya selama 2 dtk. akan menghentikan pengukuran. Tindakan ini juga menghentikan pengukuran yang dimulai secara otomatis pada tanggal dan waktu yang telah ditentukan.
- Pengoperasian otomatis (menentukan waktu dan tanggal)
 Atur waktu dan tanggal berhenti sebelumnya pada rentang SET UP.
- Untuk menghentikan pengukuran secara manual

* Menekan tombol START/STOP pada rentang DEMAND selama setidaknya 2 dtk. akan menghentikan pengukuran. Ketika berhenti, (jika data ingin disimpan ke kartu SD) indikator status LED padam.

• Untuk menghentikan pengukuran secara otomatis pada waktu dan tanggal yang telah ditentukan Atur waktu dan tanggal berhenti pada rentang **SETUP**. Metode ini hanya tersedia jika pengukuran dimulai pada waktu dan tanggal yang telah ditentukan. Ketika waktu dan tanggal berhenti yang telah ditetapkan tercapai, (jika data disimpan ke kartu SD) dan indikator status LED padam. Survei kemudian ditutup.

CATATAN

- * Mematikan instrumen (dengan mengatur tombol Fungsi ke posisi OFF) akan menghentikan survei, tetapi data pengukuran mungkin hilang. Disarankan agar survei dihentikan secara manual (tombol START/STOP) atau dengan mengatur waktu dan tanggal berhenti.
- * Memulai survei secara manual membuat waktu dan tanggal berhenti yang telah ditentukan menjadi tidak efektif. Survei harus ditutup secara manual dalam kasus ini.
- * Jika waktu dan tanggal mulai yang sudah ditentukan sebelumnya diatur setelah waktu dan tanggal berhenti yang telah ditentukan, survei tidak dapat dilakukan.

8-5 Mengatur ulang nilai demand

Ada dua metode untuk mengatur ulang (menghapus) nilai demand saat ini pada tampilan layar.

- * Tekan tombol ESC pada rentang DEMAND setidaknya selama 2 dtk.
- * Pengaturan ulang sistem

CATATAN

* Jika ingin mempertahankan nilai integrasi, mulailah pengukuran demand tanpa mengatur ulang nilai demand. Item pada rentang **DEMAND** selain nilai demand maks. serta waktu dan tanggal yang sesuai, akan diatur ulang secara otomatis.

 st Nilai demand tidak dapat diatur ulang selama pengukuran atau saat instrumen dalam mode siaga.

8-6 Menyimpan data

Ketika integrasi atau pengukuran demand dimulai, data yang diukur akan disimpan secara otomatis. Ada dua lokasi di mana data dapat disimpan.

- * Kartu SD: Maks. 511 file dapat disimpan.
- * Memori internal: Maks. 4 file dapat disimpan.

Data disimpan ke kartu SD secara otomatis ketika kartu SD telah dimasukkan sebelum instrumen dihidupkan. Jika kartu SD belum dimasukkan, data disimpan secara otomatis ke memori internal.

8-6-1 Prosedur penyimpanan

- * Ketika survei dimulai (secara manual atau otomatis), file dibuka
- * Data disimpan pada akhir setiap interval integrasi ("**Pengaturan 09**").

- * Ketika survei ditutup (secara manual atau otomatis), file ditutup
- * Semua parameter yang direkam pada setiap titik penyimpanan data disimpan ke satu file.

CATATAN

- * Jangan pernah mengatur tombol Fungsi ke posisi OFF selama survei, jika tidak, data terukur akan hilang.
- * Dalam kasus berikut, nomor file menjadi "001":
 - (1) jika nomor file telah melebihi 999;
 - (2) setelah pengaturan ulang sistem
- * Jika ada no. file yang sama, yang lama akan ditimpa.

8-6-2 Keterbatasan penyimpanan

• Keterbatasan penyimpanan (sebelum memulai survei)

Dalam kasus berikut, survei tidak dapat dimulai (secara manual atau otomatis) dengan menekan tombol **START/STOF**.

< Jika data disimpan ke kartu SD >

* Ketika 511 file telah disimpan ke kartu SD; tanda **FULL** muncul, dan data selanjutnya tidak dapat disimpan.

Beberapa file dapat dihapus melalui PC, jika tidak, semua file yang tersimpan di kartu SD dapat dihapus menggunakan "**Pengaturan 19**" dari Bagian 4 dalam panduan ini.

< Jika data disimpan ke memori internal >

* Ketika 4 file telah disimpan ke memori internal; tanda **FULL** muncul, dan data selanjutnya tidak dapat disimpan.

• Keterbatasan penyimpanan (selama survei)

Ketika kapasitas kartu SD atau memori internal telah terlampaui selama survei; pengukuran berlanjut tetapi tanda **FULL** muncul di layar tampilan dan data selanjutnya tidak akan disimpan.

Tekan tombol **START/STOP** selama 2 dtk. atau lebih dan hentikan survei satu kali. Lihat halaman sebelumnya dan hapus file yang tidak diperlukan.

• Format dan nama file

Data terukur disimpan dalam format KEW, dan nama file ditetapkan secara otomatis.

8-6-3 Parameter yang direkam

		Parameter yan	g akan disimpa	an			
	Vi	: tegangan setiap fase					
	Vi max	: nilai Vi maks.					
Tegangan	Vi min	: nilai Vi min.					
rogangan	Vi avg	: nilai Vi rata-rata					
(RMS)							
	Ai	: arus setiap fase					
Arus (RMS)	Ai max	: nilai Ai maks.					
/ :: 0.0 (! :: 10)	Ai min	: nilai Ai min.					
	Ai avg	: nilai Ai rata-rata					
	Р	: daya aktif total	Pi	: daya aktif dari setiap fase			
Daya aktif	P max	: nilai P maks.	Pi max:	nilai Pi maks.			
-	P min	: nilai P min.	Pi min :	nilai Pi min.			
	P avg	: nilai P rata-rata	Pi avg :	nilai Pi rata-rata			
	Q	: daya reaktif total	Qi	: daya reaktif dari setiap fase			
Daya reaktif	Qmax	: nilai Q maks.	Qimax	: nilai Qi maks.			
	Q min	: nilai Q min.	Qi min :	nilai Qi min.			
	u avg	: nilai Q rata-rata	Qiavg:	nilai Qi rata-rata			
	S S mov	: daya nyata total	SI	: daya nyata dari setiap tase			
Daya nyata	S min	· nilai S miaks.	Si min :	nilai Si min			
	Sillin	rillai S mini. Si mini Si milai Si mini.					
		: faktor daua dari keseluru	Ji dvy . Iban sistem	DEi : faktor daua dari setian fase			
	DF may	· nilai DE make	DFi ma'	v · nilai PFi make			
Faktor daya	PF min	· nilai PF min	PFi mir	n nilai PFi min			
	PFavo	· nilai PE rata-rata	PEi avo	i nilai PFi rata-rata			
	f	: frekuensi V1	a . g	In ; arus pada garis netral			
	f max	: nilai f maks.	Aruo Notrol	In max : nilai In maks.			
Frekuensi	f min	: nilai f min.	Alushelial	In min : nilai In min.			
	favg	: nilai f rata-rata		In avg : nilai In rata-rata			
-	+WP	: total energi aktif (konsu	msi)				
Energi aktif	+WPi	: energi aktif (konsumsi) s	setiap fase				
(konsumsi)	-WP	: total energi aktif (regene	erasi)				
(regenerasi)	-WPi	: energi aktif (regenerasi)	setiap fase				
(Keselurunan)	#WP	: energi aktif total (keselu	ıruhan)				
	#WPi	: energi aktif (keseluruhar	n) setiap fase				
Eporgi	+WS	: total energi nyata (kons	umsi)				
puete	+WSi	: energi nyata (konsumsi)	setiap fase				
(konsumsi)	-WS	: total energi nyata (reger	nerasi)				
(regenerasi)	-WSi	: energi nyata (regeneras	i) dari setiap fa	ase			
(keseluruhan)	#WS	: total energi nyata (kese	luruhan)				
(Robotaranan)	#WSi : energi nyata (keseluruhan) dari setiap fase						
Energi							
reaktif	+WQ	: total energi reaktif (kons	sumsi)				
(konsumsi)							
Nilai demand	#DFM	total nilai demand	#DFMi	· nilai demand dari setian fase			
i vital del la lu		· nilai demand target		י ווגמו עבודומרוע עמוד פרומף ומפר			
		. mai acmana taryet					

* i = 1, 2, 3

di mana, "max." dan "avg." berarti nilai maksimum dan rata-rata selama suatu interval.

• Contoh data terukur

ID FILE	6305	KEW "6305"
VERSI	1_01	Versi perangkat lunak
NOMOR SERI	01234567	∢ −−−−− s/n
ALAMAT MAC	00_11_22_33_44_55	Alamat Bluetooth
NOMOR ID	00-001	Pengaturan 23
KONDISI	SELF	◀──── Tidak ada
PENGKABELAN	3P4W	Pengaturan 01
RENTANG VOLT	300V	Pengaturan 02
RASIO VT	1,00	Pengaturan 05
JENIS SENSOR	8125	Pengaturan 03
RENTANG ARUS	500A	Pengaturan 04
RASIO CT	1,00	Pengaturan 06
INTERVAL	'30M	Pengaturan 09
MULAI	yy/mm/dd hh:mm:ss	Pengaturan 11 atau 13
TARGET DEMAND	100,0kW	Pengaturan 15
INTERVAL DEMAND	30M	Pengaturan 16

*Pengaturan 15 dan 16 tidak terkait dengan pengukuran integrasi.

							/	/				
	TANGGAL	WAKTU	Waktu yang Terlewati	V1	V2	V3		$\left(\right)$	Q3	f	In	
	2012/01/10	09:00:00	00000:30:00				\mathbb{Z}	7				
1	2004/03/22	09:30:00	00001:00:00									
2							7					

			\int_{-}^{-}	7								7				_
V1	V2	V3			Q3	f	In	V1	V2	V3	7	$\left[\right]$	Q3	f	In	l
max	max	max	Δ		max	max	max	avg	avg	avg	Δ		avg	avg	avg	
				$\left[\right]$												l I
			\Box	١								7				
			\square	/							\square					
		. 1		_/	1		. 1				. /					ł

Data akan ditampilkan dalam format eksponensial. (Misalnya, 38672,1kWh, "3,86721E+7").

8-7 Digit yang Ditampilkan/Indikasi di atas rentang

• Digit

* Prediksi nilai demand (Guess), Nilai demand saat ini (Present): maks. 6 digit

Digit nilai demand yang diprediksi dan saat ini sesuai dengan nilai target permintaan yang tercantum pada tabel di bawah.

Nilai demand target (" Pengaturan 16 ")	Digit dan titik desimal
0,1-999,9 W/VA	0,0-99999,9 W/VA
0,1-999,9 kW/kVA	0,0-99999,9 kW/kVA
0,1-999,9 MW/MVA	0,0-99999,9 MW/MVA
0,1-999,9 GW/GVA	0,0-99999,9 GW/GVA

* Faktor muatan (%): maks. 6 digit 9999,99%

• Indikasi di atas rentang/lainnya

Ketika prediksi nilai demand, nilai demand saat ini (nilai demand maksimal) dan faktor muatan melebihi 99999,9, segmen menjadi "

- * Ketika tegangan masukan dan arus melebihi jumlah tampilan maksimal, tanda Vol atau Aol ditampilkan pada LCD. Dalam hal ini, pengukuran yang akurat tidak dapat dilakukan.
- * Pada rentang W, ketika P (daya aktif) ditunjukkan dengan garis "----", ini berarti kenaikan energi listrik tidak signifikan.

Lihat "6-5-2 Indikasi di atas rentang/Indikasi batang" dalam panduan ini.

9. Kartu SD/Memori internal

9.1 Instrumen dan Kartu SD/Memori internal

Instrumen ini mendukung kartu SD 1/ 2Gbyte.

• Jumlah maksimum data yang disimpan

Tujuan untuk menyim	npan data	Kart	Memori internal	
Kapasitas		1GB 2GB		ЗМВ
Penyimpanan manı	ual (<mark>W</mark>)	sekitar 3,3 juta hasil	sekitar 6,7 juta hasil	sekitar 10.000 hasil
Penuimpanan	1 dtk	sekitar 8 hari	sekitar 17 hari	Sekitar 33 mnt.
otomatis pada	1 mnt	sekitar 16 bulan	sekitar 33 bulan	Sekitar 33 jam
interval prasetel	30 mnt	3 tahun a	sekitar 42 hari	
Jumlah maksimum file		5	4	

* Jika tidak ada file yang tersimpan di kartu SD.

• Nama file

Nama file ditetapkan secara otomatis.

Transfer data

1. Kartu SD dan USB

Data di kartu SD atau memori internal dapat ditransfer ke PC menggunakan koneksi USB atau slot/pembaca kartu SD.

	Metode transfer			
	USB	Pembaca kartu		
Data kartu SD (file)	✓ *1	\checkmark		
Data memori internal (file)	\checkmark			

*1: Disarankan untuk mentransfer data berukuran besar dengan menggunakan kartu SD karena transfer data tersebut melalui USB memerlukan waktu. (waktu transfer: sekitar 320MB/jam)

* Mengenai manipulasi kartu SD, silakan lihat panduan petunjuk yang disertakan pada kartu.
 * Untuk menyimpan data tanpa masalah, pastikan untuk menghapus file selain data yang diukur dengan instrumen ini dari kartu SD.

2. Bluetooth

Data pengukuran dapat diperiksa pada perangkat Android secara real-time melalui komunikasi Bluetooth.

Penting untuk mengaktifkan fungsi Bluetooth sebelum menggunakan komunikasi Bluetooth. (Pengaturan No. 26: Bluetooth)

* Sebelum mulai menggunakan fungsi ini, unduh aplikasi khusus "KEW Smart 6305" dari situs Internet. Aplikasi "KEW Smart 6305" tersedia di situs pengunduhan secara gratis. (Diperlukan akses Internet.)

9.2 Memasukkan/melepaskan kartu SD

<u>/!\</u> BAHAYA				
• Jangan membuka Penutup kartu SD selama pengukuran.				
 Peringana pengana pengana				
Pastikan tombol Fungsi diatur ke posisi "OFF" ketika memasukkan/melepaskan kartu SD. Jika tidak, data yang disimpan				
dapat nilang, atau instrumen mungkin rusak.				

• Menyisipkan kartu SD:

- (1) Kendurkan sekrup penutup kartu SD dan buka penutup kartu SD.
- (2) Masukkan kartu SD ke dalam slot kartu SD dengan bagian atasnya menghadap ke atas.
- (3) Kemudian tutup penutupnya dan kencangkan sekrupnya.

• Melepaskan kartu SD:

- (1) Kendurkan sekrup penutup kartu SD dan buka penutup kartu SD.
- (2) Dorong perlahan kartu SD ke arah dalam, lalu kartu tersebut keluar. Keluarkan kartu secara perlahan.
- (3) Tutup penutupnya dan kencangkan sekrupnya.

10. Fungsi komunikasi/perangkat lunak antarmuka

1. Pengenalan

Antarmuka

Instrumen ini dilengkapi dengan antarmuka USB dan Bluetooth. Metode komunikasi: USB Ver2.0 Bluetooth: Bluetooth Ver.5.0 Profil yang sesuai: GATT

Berikut ini dapat dilakukan melalui komunikasi USB/Bluetooth.

- * Mengunduh file di memori internal instrumen ke PC
- * Melakukan pengaturan instrumen melalui PC
- * Menampilkan hasil pengukuran pada PC sebagai grafik secara real-time, dan juga menyimpan data pengukuran pada saat yang bersamaan

• Persyaratan Sistem

* OS (Sistem Operasi)

Silakan lihat label versi pada wadah CD tentang OS Windows. (CPU: Pentium 4 1.6GHz atau lebih)

- * Memori 1Gbyte atau lebih
- * Tampilan 1024 × 768 dot, 65536 warna atau lebih
- * HDD (diperlukan ruang hard-disk) 1Gbyte atau lebih (termasuk Framework)
- *.NET Framework (4.6.1 atau lebih baru)

Merek dagang

- * Windows® adalah merek dagang terdaftar dari Microsoft di Amerika Serikat.
- * Pentium adalah merek dagang terdaftar dari Intel di Amerika Serikat.
- * Bluetooth adalah merek dagang terdaftar dari Bluetooth SIG.

Perangkat lunak terbaru tersedia untuk diunduh dari situs web kami. www.kew-ltd.co.jp

11.Fungsi lainnya

11.1 Mendapatkan daya dari jalur terukur

Ketika ada kesulitan dalam mendapatkan daya dari stopkontak, KEW 6305 beroperasi dengan daya pada saluran yang diukur dengan menggunakan Kabel uji tegangan dengan Adaptor catu daya MODEL8312.

Hubungkan Adaptor sesuai prosedur berikut.

Untuk detail lebih lanjut, lihat Panduan petunjuk untuk MODEL8312.

11.2 Rentang otomatis

Fungsi rentang otomatis tersedia pada rentang W, Wh, DEMAND, dan WAVE. Nilai arus dalam rentang luas dapat diukur dengan fungsi ini; akan sangat membantu jika kapasitans beban sangat bervariasi menurut waktu dan tanggal.

- Rentang: 2 rentang otomatis/rentang maks dan min dari setiap Sensor penjepit
- Rentang bergeser ke atas ketika nilai puncak sama dengan dua kali F.S (gelombang sinus) pada rentang minimum terdeteksi.

Nilai akurat mungkin tidak diperoleh jika terjadi fluktuasi besar dalam 1 dtk.

11.3 Pengoperasian pada gangguan listrik AC

Ketika catu daya AC terputus selama perekaman, KEW 6305 beroperasi sebagai berikut.

- Catu daya: mengembalikan ke baterai ketika baterai telah dipasang.
- Data pengukuran: disimpan hingga interval terakhir sebelum gangguan.
- Pengoperasian setelah gangguan: perekaman dimulai ulang dengan pengaturan yang telah ditentukan sebelumnya jika listrik terputus selama perekaman. Dalam hal ini, terjadinya gangguan dicatat dengan informasi waktu dan tanggal. Ketika listrik telah pulih, "waktu dan tanggal gangguan listrik: STOP" dan "waktu dan tanggal listrik pulih: START" disimpan dalam file. Ketika terjadi gangguan listrik, ketika tidak ada perekaman yang dilakukan dan kemudian listrik kembali menyala, instrumen tidak aktif secara otomatis.

File di kartu SD atau memori internal mungkin rusak jika listrik AC terputus saat mengaksesnya.

Disarankan untuk menggunakan catu daya AC dan baterai secara bersamaan jika terjadi gangguan listrik.

11.4 Pemeriksaan data

10 data terakhir (termasuk yang terbaru) dapat dipanggil kembali dan diperiksa di LCD. Pilih Rentang <mark>DATA CHECK</mark> untuk memeriksa data.

DATA No.	01	02	
Data	Data Data		
tersimpan	terbaru	sebelum	
		yang	
		terbaru	

09	10
Sembilan	Sepuluh
sebelum	sebelum
yang	yang
terbaru	terbaru

Sistem		Item yang akan ditampilkan						
pengkabelan (Pengaturan no. 01)	Posisi tampilan	Layar 1 (Tanggal & waktu)	Layar 1 (Tegangan)	Layar 1 (Arus)	Layar 4 (Daya)	Layar 5 (Daya)	Layar 5 (PERMINTAAN)	
3P4W 3P3W3A	Atas Tengah Bawah	YY.MM.DD hh.mm.ss —	V1 V2 V3	A1 A2 A3	P1 P2 P3	TIME +WP +WS	Target value — Present value	
3P3W 1P3W	Atas Tengah Bawah	YY.MM.DD hh.mm.ss —	V1 V2 —	A1 A2 —	P1 P2 —	TIME +WP +WS	Target value — Present value	
1P2W (3ch)	Atas Tengah Bawah	YY.MM.DD hh.mm.ss —	V1 — —	A1 A2 A3	P1 P2 P3	TIME +WP +WS	Target value — Present value	
1P2W (2ch)	Atas Tengah Bawah	YY.MM.DD hh.mm.ss —	V1 — —	A1 A2 —	P1 P2 —	TIME +WP +WS	Target value — Present value	
1P2W (1ch)	Atas Tengah Bawah	YY.MM.DD hh.mm.ss —	V 	A1 — —	P 	TIME +WP +WS	Target value — Present value	

12. Pemecahan Masalah

Jika dicurigai adanya cacat atau kerusakan pada instrumen, periksa hal-hal berikut terlebih dahulu. Jika masalah Anda tidak tercantum di bagian ini, hubungi distributor Kyoritsu setempat Anda.

Gejala	Pemeriksaan
(1) Instrumen tidak bisa dinyalakan.	 beroperasi dengan catu daya AC Kabel daya terhubung dengan kuat dan benar? Kabel listrik tidak putus? Tegangan suplai berada dalam kisaran yang diizinkan? beroperasi dengan baterai Baterai dipasang dengan memperhatikan polaritas yang benar? Baterai Ni-HM terisi penuh? Baterai alkaline tidak habis?
(2) Pesan kesalahan muncul saat menyalakan instrumen.	 Matikan instrumen, lalu hidupkan kembali. Tidak ada masalah bila pesan kesalahan tidak muncul; sirkuit internal mungkin rusak ketika pesan kesalahan yang sama muncul. Hubungi distributor Kyoritsu setempat Anda. Jika NG (Err.001) hanya ditemukan pada item RTC, berarti baterai koin internal untuk cadangan habis. (Tanggal dan waktu mungkin salah setiap kali mematikan instrumen) Hubungi distributor Kyoritsu setempat Anda. Masa pakai baterai cadangan adalah sekitar 5 tahun.
(3) Tombol apa pun tidak berfungsi.	Fungsi kunci tombol dinonaktifkan?Periksa Tombol efektif pada setiap Rentang.
(4) Pembacaan tidak stabil atau tidak akurat	 Pastikan bahwa: * Kabel uji tegangan dan sensor penjepit terhubung dengan benar. * Pengaturan instrumen dan konfigurasi kabel yang dipilih sudah sesuai. * Sensor yang tepat digunakan dengan pengaturan yang tepat. * Tidak ada kerusakan pada kabel uji tegangan. * Sinyal masukan tidak terganggu. * Medan magnet listrik yang kuat tidak ada di dekatnya. * Lingkungan penggunaan memenuhi spesifikasi instrumen ini.
(5) Tidak mampu menyimpan data ke memori internal	 Periksa jumlah file di memori. Pastikan tujuan penyimpanan data diatur ke memori internal.

Gejala	Pemeriksaan
(6) Data tidak dapat disimpan di kartu SD.	 Kartu SD dimasukkan dengan benar? Kartu SD telah diformat? Apakah ada ruang yang tersedia di kartu SD? Tujuan untuk penyimpanan data diatur ke "kartu SD"? Periksa jumlah maksimal file atau kapasitas kartu SD. Pastikan pengoperasian kartu SD yang akan digunakan telah dicentang. Pastikan pengoperasian kartu SD yang benar pada perangkat keras lain.
(7) Pengunduhan dan pengaturan tidak dapat dilakukan melalui komunikasi USB.	 Pastikan bahwa: * Instrumen dan PC terhubung dengan kabel USB dengan benar, * Rentang SET UP dipilih, dan * Perangkat dikenali di KEW Windows for KEW6305. Jika tidak, driver USB mungkin tidak diinstal dengan benar. Lihat Bagian 13 dalam panduan ini.

13.Spesifikasi

13.1 Spesifikasi umum

Lokasi untuk digunakan	: Penggunaan di dalam ruangan	, Ketinggian hingga 2000 m				
Rentang suhu & kelembapa	an : 23°C±5°C, Kelembapan relatif 8	85% atau kurang				
(akurasi terjamin)	(tanpa kondensasi)					
Suhu Pengoperasian &	: 0°C hingga 50°C, Kelembapan	: 0°C hingga 50°C, Kelembapan relatif 85% atau kurang				
rentang kelembapan	(tanpa kondensasi)					
Suhu Penyimpanan &	: -20°C hingga 60°C, Kelembapa	an relatif 85% atau kurang				
rentang kelembapan	(tanpa kondensasi)					
Garis yang diukur	: 2 kabel fase tunggal (1ch ~ 3c kabel tiga fase	h), 3 kabel fase tunggal, 3 kabel tiga fase, 4				
Resistansi insulasi	: 50MΩ atau lebih/1000V					
	antara (Terminal masukan Tega	ngan/Arus. Konektor daya) dan (Enklosur)				
Pembaruan indikasi	: Setiap 1 dtk					
Standar uang berlaku	: IEC61010-1, -2-030 Pengukurar	n CAT III 600V Tingkat polysi 2.				
	IEC 61010-031, IEC61326, EN50	581				
Dimensi	: 175(P) x 120(L) x 65(T) mm					
Bobot	: Sekitar 900 g (termasuk batera	ai)				
Aksesori	: Kabel uji tegangan M-7141B (me	erah/hijau/hitam, biru dengan klip buaya) x 1 set				
	Kabel daya M-7170 x 1 pce.					
	Baterai Alkaline ukuran AA (LR	6) x 6 pcs				
	CD-ROM x 1 pce.					
	- Perangkat lunak komunikas	si (KEW Windows for KEW 6305)				
	- Panduan petunjuk (file PDF)				
	Kabel USB M-7148 (dengan Filt	er) x 1 pce.				
	Casing pembawa M-9125 x 1 pc	e.				
	Panduan cepat x 1 pce.					
	Kartu SD x 1 pce.					
Komponen opsional	: Kartu SD 2GB (M-8326-02)					
	M-8128 (Sensor penjepit 50A	Φ24mm)				
	KEW 8135 (Sensor penjepit 50 A	Φ75mm)				
	M-8127 (Sensor penjepit 100A	Φ24mm)				
	M-8126 (Sensor penjepit 200A	Φ40mm)				
	M-8125 (Sensor penjepit 500A	Φ40mm)				
	M-8124 (Sensor penjepit 1000A	Φ68mm)				
	KEW 8130 (Sensor fleksibel 1000A	Φ110mm)				
	KEW 8129 (Sensor fleksibel 3000A	Φ 150mm) * Produk yang dihentikan				
	KEW 8133 (Sensor Fleksibel 3000A	Φ170mm)				
	Adaptor catu daya M-8312					
	Casing pembawa (untuk instrumen) N	M-9132				

13.2 Pengukuran instrumen (Rentang 🛛)

(1) Tega<u>ngan V(i) (V)</u>

Rentang	150/ 300/ 600V
Digit yang ditampilkan	4 digit
Masukan yang	10 hingga 110% dari setiap rentang
diizinkan	
Rentang tampilan	5 hingga 130% dari setiap rentang
Faktor puncak	2,5 atau kurang
Akurasi	±0,2%rdg±0,2%f.s. (gelombang sinus, 45 - 65Hz)
Impedansi masukan	Sekitar 8,3MΩ

(2) Arus A(i) (A)

Rentang	Tipe 50A (8128/8135)	:1/ 5/ 10/ 25/ 50A/ AUTO	
	Tipe 100A (8127)	:2/ 10/ 20/ 50/ 100A/ AUTO	
	Tipe 200A (8126)	:4/ 20/ 40/ 100/ 200A/ AUTO	
	Tipe 500A (8125)	:10/ 50/ 100/ 250/ 500A/ AUTO	
	Tipe 1000A (8124/8130)	:50/ 100/ 200/ 500/ 1000A/ AUTO	
	Tipe 3000A (8129)	: 300/1000/3000A	
Digit yang	4 digit		
ditampilkan			
Masukan yang	10 hingga 110% dari setia	ip rentang	
diizinkan			
Rentang tampilan	1 hingga 130% dari setiap	o rentang	
Faktor puncak	3,0 atau kurang (puncak i	maks. 1,4V)	
Akurasi	±0,2%rdg±0,2%f.s. + akurasi sensor penjepit (gelombang sinus, 45 - 65Hz)		
	* +1% f.s. pada rentang	terendah.	
Impedansi masukan	Sekitar 100kΩ		

(3) Day<u>a aktif P(i) (W)</u>

Rentang	(Rentang tegangan) x (Rentang arus)		
Digit yang		4 digit	
ditampilkan			
Akurasi	±0,3%r	dg±0,2%	f.s.
		+ ak	xurasi sensor penjepit (faktor daya 1, gelombang sinus, 45 - 65Hz)
	*	+1% f.s.	ketika rentang arus terendah dipilih.
Efek faktor daya	±1,0%rdg		
	(nilai yang ditunjukkan ketika faktor daya 0,5 terhadap faktor daya 1)		
Indikasi polaritas	Konsumsi : +(tanpa tanda), Regenerasi: -		
Persamaan	1P2W	×1	$P = P_1$
		×2	P = P1 + P2
		×З	P = P1 + P2 + P3
	1P3W		P = P1 + P2
	3P3W		P = P1 + P2
ЗРЗЖЗА		4	P = P1 + P2 + P3
	3P4W		D = D1 + D2 + D2

(4) Frekuensi f (Hz)

Akurasi	±3dgt
Digit yang	3 digit
ditampilkan	
Masukan yang	10 - 110% dari rentang V (gelombang sinus, 45 - 65Hz)
diizinkan	
Rentang tampilan	40,0 - 70,0Hz
Sumber masukan	V1

(5) Item penghitungan

Daya nyata S (VA)

Digit yang ditampilkan	Sama dengan daya aktif.		
Persamaan	1P2W	×1	$S = V \times A$
		×2	$S_i = V1 \times Ai(i = 1, 2), \ S = S_1 + S_2$
		×З	$S_i = V1 \times Ai(i = 1,2,3), S = S_1 + S_2 + S_3$
	1P3W		$Si = Vi \times Ai(i = 1, 2)$, $S = S1 + S2$
	3P3W		$Si = Vi \times Ai(i = 1, 2)$, $S = \sqrt{3}/2(S1 + S2)$
	3P3W3A		$Si = Vi \times Ai(i = 1, 2, 3), S = S1 + S2 + S3$
	3P4W		$Si = Vi \times Ai(i = 1, 2, 3), S = S1 + S2 + S3$

Daya reaktif Q (Var)

Digit yang ditampilkan	Sama dengan daya aktif.		
Indikasi polaritas	- (minus + (tanpa	s) : a tanda) :	fase terdepan fase tertinggal
Persamaan	1P2W ×1		$Q = \sqrt{S^2 - P^2}$
		×2	$Q_i = \sqrt{S_i^2 - P_i^2} (i = 1, 2),$
			$Q = Q_1 + Q_2$
		×З	$Q_i = \sqrt{S_i^2 - P_i^2} (i = 1, 2, 3).$
		$Q = Q_{1} + Q_{2} + Q_{3}$	
	1P3W 3P3W 3P3W3A 3P4W		$Qi = \sqrt{Si^2 - Pi^2} (i = 1, 2), Q = Q1 + Q2$
			$Qi = \sqrt{Si^2 - Pi^2} (i = 1, 2), Q = Q1 + Q2$
			$Qi = \sqrt{Si^2 - Pi^2} (i = 1, 2, 3), Q = Q1 + Q2 + Q3$
			$Qi = \sqrt{Si^2 - Pi^2} (i = 1, 2, 3), Q = Q1 + Q2 + Q3$

Faktor daya PF			
Rentang tampilan	-1,000 hi	ingga 0,0	000 hingga 1,000
Indikasi polaritas	- (minus)) :	fase terdepan
	+ (tanpa	tanda):	fase tertinggal
Persamaan	1P2W	×1	$PF = \left \frac{P}{S} \right $
		×2	$PFi = \left \frac{Pi}{Si} \right (i = 1, 2). PF = \left \frac{P}{S} \right $
		×З	$PFi = \left \frac{Pi}{Si} \right (i = 1, 2, 3), PF = \left \frac{P}{S} \right $
	1P3W		$PFi = \left \frac{Pi}{Si} \right (i = 1, 2), PF = \left \frac{P}{Si} \right $
	3P3W		$PFi = \left \frac{Pi}{Si} \right (i = 1, 2), PF = \left \frac{P}{S} \right $
	ЗРЗѠЗА		$PFi = \begin{vmatrix} Pi \\ Si \end{vmatrix} (i = 1, 2, 3), PF = \begin{vmatrix} P \\ S \end{vmatrix}$
	3P4W		$PFi = \begin{vmatrix} Pi \\ Si \end{vmatrix} (i = 1, 2, 3), PF = \begin{vmatrix} P \\ S \end{vmatrix}$

Arus netral In (A) *hanya jika "WIRING = 3P4W"

	$An = A1 + A2\cos\theta_2 + A3\cos\theta_3$
Penghitungan	[*] θ2 : Perbedaan fase antara <i>A1</i> dan A2
	[*] θ3 : Perbedaan fase antara <i>A1</i> dan A3

13.3 Pengukuran Integrasi (Rentang Wh)

Item yang ditampilkan	Konsumsi (Keseluruhan: $+W\!P$, setiap fase: $+W\!Pi$)			
Rentang tampilan	0,00Wh hingga 999	0,00Wh hingga 999999GWh		
	(digit dan satuan ak	(digit dan satuan akan disesuaikan berdasarkan $+W\!S$.)		
Persamaan	Konsumsi	Setiap fase: $+WPi = \sum (+Pi)/h$		
	(+WP)	Keseluruhan: $+W\!P=\sumig(+W\!Piig)$		
	Regenerasi	Setiap fase: $-WPi = \sum \frac{(-Pi)}{h}$		
	(-WP)	Keseluruhan: $-W\!P = \sum igl(-W\!Piigr)$		

Energi aktif WP (Wh)

- * *h* : Durasi integrasi
- * i = 1 (1P2W_1ch)
- * *i* = 1,2 (1P2W_2ch, 1P3W,3P3W)
- * *i* = 1,2,3 (1P2W_3ch, 3P3W3A, 3P4W)

Energi nyata WS (VAh)

Item yang ditampilkan	Konsumsi (Keseluruhan: $+W\!S$, setiap fase: $+W\!Si$)			
Rentang tampilan	0,00VAh hingga 99	0,00VAh hingga 999999GVAh		
	(digit dan satuan akan disesuaikan berdasarkan $+W\!S$)			
Persamaan	Konsumsi	Setiap fase: $+WSi = \sum_{h} \frac{(+Si)}{h}$		
	(+WS)	Keseluruhan: $+WS=\sumig(+WSiig)$		
	Regenerasi	Setiap fase: $-WSi = \sum_{h} \frac{(-Si)}{h}$		
	(-WS)	Keseluruhan: $-WS = \sum (-WSi)$		

* jika: +Si:P>0, -Si:P<0

- * h: Durasi integrasi
- * i = 1 (1P2W_1ch)
- * i = 1,2 (1P2W_2ch, 1P3W,3P3W)
- * *i* = 1,2,3 (1P2W_3ch, 3P3W3A,3P4W)

Energi reaktif WQ (Varh)

ltem yang	Tidak ada (Data berikut akan disimpan.)		
ditampilkan			
Rentang tampilan	0,00varh ~ 999999Gvarh		
Persamaan	Konsumsi (+WQ)	Keseluruhan: $+WQ = \sqrt{(+WS)^2 - (+WP)^2}$	

Durasi integrasi	
ltem yang	00:00:00 (jam: menit: detik)
ditampilkan	
Rentang tampilan	00:00:00 (0 dtk.) - 99:59:59 (99-jam 59-mnt 59-dtk)
	hingga 000100 - 999999 (999999-jam)
	*Tampilan berubah seperti di atas.

13.4 Pengukuran demand (Rentang DEMAND)

(1) Nilai target (TDEM) Rentang Nilai prasetel akan ditampilkan dan tidak berbeda. (0,1W - 999,9GW) tampilan

(2) Nilai yang diprediksi (G_{DEM})

/ mai gang alpioana		
Rentang	Posisi desimal dan unit sama dengan T _{DEM} .	
tampilan	0 hingga 999999dgt ("OL" akan ditampilkan jika melebihi kisaran ini.)	
Persamaan		
	$C = \Sigma DEM \times Demand int erval$	
	$O_{DEM} = 2DEM \wedge \frac{1}{Period from beginning of demand interval}$	

(3) Nilai demand (nilai saat ini) (ΣDEM)

<u>)</u>	
Rentang	Posisi desimal dan unit sama dengan T _{DEM} .
tampilan	0 hingga 999999dgt ("OL" akan ditampilkan jika melebihi kisaran ini.)
Persamaan	$\Sigma DEM = (+WP \ from beginning \ of \ demand \ int \ erval) \times \frac{1 hour}{Demand \ int \ erval}$
	, jika $\Sigma DEM = \sum \Sigma DEMi$

₩ i = 1 (1P2W×1)

 $\underset{i=2}{\times}$ (1P2W×2, 1P3W, 3P3W) $\underset{i=3}{\times}$ (1P2W×3, 3P3W3A, 3P4W)

(4) Faktor muatan

Rentang	0,00 hingga 9999,99% ("OL" akan ditampilkan jika melebihi kisaran ini.)
tampilan	
Persamaan	$\Sigma DEM / T_{DEM}$

13.5 Spesifikasi lainnya

(1) Catu daya AC

j eata aaga / te		
Rentang tegangan	AC100~240V±10%	
Frekuensi	45~65Hz	
Konsumsi daya	10VA maks.	

(2) Catu daya DC

Тіре	LR6: baterai ukuran AA (alkaline) x 6 pcs	
Tegangan terukur	DC9V (=1,5V×6)	
Konsumsi arus	110mA typ.(@9V)	
Daya tahan baterai	Sekitar 15 jam (penggunaan standar, Bluetooth: OFF, Lampu latar belakang: OFF)	

(3) Fungsi pemeriksaan baterai

Catu daya		Tanda	Tegangan Baterai (V) (±0,1V)
Catu daya AC		Ф	_
Catu daya DC	Rentang efektif	💵 hingga 💶	10,5 hingga 5,5V
(baterai)	Peringatan	(berkedip)	5,5V atau kurang:

* KEW 6305 beroperasi dengan catu daya AC jika dihubungkan.

(4) Merekam data

Memori internal

Memori	Memori FLASH					
Kapasitas rekaman	ЗМВ					
Kapasitas data	1352byte/data	(11200	hasil/penyimpanan	manual,	2200	hasil:
	penyimpanan ot	tomatis (p	pewaktu))			
Jumlah maksimum file yang	4					
disimpan						

Antarmuka Kartu PC

Jenis kartu	Kartu memori SD (kartu SD)
Kapasitas	2GB
Kapasitas data	1352byte/data
Jumlah maksimum hasil yang	Penyimpanan manual (1GB: Sekitar 3,74 juta), (2GB: Sekitar 7,49 juta)
disimpan	Penyimpanan otomatis (1GB: Sekitar 730 ribu), (2GB: Sekitar 1,47 juta)
	Ukuran file maksimal per file adalah 2GB.
Jumlah maksimum file yang	Maks. 511 file
disimpan	
Format penyimpanan	KEW format
Format	2GB atau kurang: FAT16, 4GB atau lebih: FAT32

(5) Fungsi komunikasi eksternal

Metode komunikasi	USB Ver2.0
No. Pengidentifikasian USB	ID Vendor: 12EC(Hex)
	ID Produk: 6305(Hex)
	No. seri: 0+7 no. digit individu
Kecepatan komunikasi	12Mbps (Kecepatan penuh)
Rating baud	

* Daisy chain dari beberapa unit KEW6305 (maks 10 buah) menggunakan HUB memungkinkan pengenalan individu. (Transfer data ke PC dapat dilakukan masing-masing satu unit.)

- *Panjang kabel USB: 2m maks.
- (6) Fungsi komunikasi eksternal (Bluetooth)

Metode komunikasi	Bluetooth Ver.5.0
Profil.	GATT
Frekuensi	2402 hingga 2480 MHz
Metode modulasi	GFSK(1Mbps), π/4-DQPSK(2Mbps), 8DPSK(3Mbps)
Sistem transmisi:	Sistem lompatan frekuensi

13.6 Spesifikasi Sensor penjepit

·	< MODEL8128 >	< MODEL8127 >	< MODEL8126 >	
Arus terukur	5 A rms AC (rating maks: AC50Armns)	100 A rms AC (141Apeak)	200 A rms AC (283Apeak)	
Tegangan keluaran	0 ~ 50A rms (50 mV AC/5 A AC) (500 mV AC/50 A AC)	0 ~ 500 mV AC (500 mV AC/100 A AC): 5 mV/A	0 ~ 500 mV AC (500 mV AC/200 A AC) : 2,5 mV/ A	
Rentang pengukuran	0 ~ 50 A rms AC (70,7 A peak)	0 ~ 100 A AC	0 ~ 200 A AC	
Akurasi (masukan sinus)	±0,5%rdg±0,1 mV (50/60 Hz) ±1,0%rdg±0,2 mV (40 Hz ~ 1kHz)			
Karakteristik fase	dalam ±2,0° (0,5 ~ 50A/45 ~ 65 Hz)	dalam ±2,0° (1 ~ 100A/45 ~ 65 Hz)	dalam ±1,0° (2 ~ 200A/45 ~ 65 Hz)	
Rentang Suhu & Kelembapan (akurasi terjamin)	23±5°C, kelembapan relatif 85% atau kurang (tanpa kondensasi)			
Rentang suhu pengoperasian	0 hingga 50°C, kelembapan relatif 85% atau kurang (tanpa kondensasi)			
Rentang suhu penyimpanan	-20 hingga 60°C, kelembapan relatif 85% atau kurang (tanpa kondensasi)			
Masukan yang diizinkan	50 A rms AC (50/60 Hz)	100 A rms AC (50/60 Hz)	200 A rms AC (50/60 Hz)	
Impedansi keluaran	Sekitar 20 Ω	Sekitar 10 Ω	Sekitar 5 Ω	
digunakan	penggunaan di dalam ruangan, ketinggian 2000m atau kurang			
Standar yang berlaku	IEC 61010-1, IEC 61010-2-032 Pengukuran CAT III (300V) Tingkat polusi 2 IEC61326		IEC 61010-1, IEC 61010-2-032 Pengukuran CAT III (600V) Tingkat polusi 2 IEC61326	
Tegangan tertahan	3540 V AC/5 dtk antara Rahang - enklosur, enklosur - terminal keluaran, Rahang – terminal keluaran	3540 V AC/5 dtk antara Rahang - enklosur, enklosur – terminal keluaran, Rahang – terminal keluaran	5350 V AC/5 dtk antara Rahang - enklosur, enklosur – terminal keluaran, Rahang – terminal keluaran	
Resistansi insulasi	50 MΩ atau lebih/1000 V antara Rahang – enklosur, enklosur – terminal keluaran, Rahang – terminal keluaran			
Ukuran konduktor maks.	Φ24 mm		Φ40 mm	
Dimensi	100(P) × 60(L) × 26(T) mm		128(P) × 81(L) × 36(T) mm	
Panjang kabel	Sekitar 3m			
Terminal keluaran	MINI DIN 6PIN			
Bobot	Sekitar 160 g Sekitar 260 g			
Aksesori	Panduan petunjuk, Penanda kabel			
Opsi	7146 (Φ4 Steker Banana), 7185 (Kabel ekstensi)			

	< MODEL8125 >	< MODEL8124 >	< MODEL8129 >
			Discontinued
Arus terukur	500 A rms AC (707 A peak)	1000 A rms AC (1414 A peak)	Rentang 300A: 300 A rms AC (424 A peak) Rentang 1000A: AC 1000 Arms (1414Apeak) Rentang 3000A: AC 3000 Arms (4243Apapak)
Tegangan keluaran	ACO ~ 500mV (AC500mV/500A) : AC 1mV/A	ACO ~ 500mV (AC500mV/1000A): 0,5mV/A	(4245Apeak) Rentang 300A: AC0 - 500mV (AC500mV/AC 300A):1,67mV/A Rentang 1000A: AC0 - 500mV (AC500mV/AC1000A): 0,5mV/A Rentang 3000A: AC0 - 500mV (AC500mV/AC3000A): 0,167mV/A
Rentang pengukuran	ACO ~ 500Arms	ACO ~ 1000Arms	Rentang 300A: 30 - 300Arms Rentang 1000A: 100 - 1000Arms Rentang 3000A: 300 - 3000Arms
Akurasi (masukan sinus)	±0,5%rdg±0,1mV (50/60Hz)	±0,5%rdg±0,2mV (50/60Hz)	±1,0%rdg (45 – 65 Hz)
Karakteristik fase	dalam ±1,0° (5 ~ 500A/45 ~ 65Hz)	dalam ±1,0° (10 ~ 1000A/45 ~ 65Hz)	dalam ±1,0° (dalam setiap rentang pengukuran: 45 - 65Hz)
Rentang Suhu & Kelembapan (akurasi terjamin)	23±5°C, kelembapan relatif 85% atau kurang (tanpa kondensasi)		
Rentang suhu pengoperasian	0 ~ 50°C, kelembapan relatif 85% atau kurang (tanpa kondensasi)		
Rentang suhu penuimpanan	-20 ~ 60°C, kelembapan relatif 85% atau kurang (tanpa kondensasi)		
Masukan yang diizinkan	500 A rms AC (50/60 Hz)	1000 A rms AC (50/60 Hz)	3600 A rms AC (50/60 Hz)
Impedansi keluaran	Sekitar 2 Ω	Sekitar 1 Ω	Sekitar 100 Ω atau kurang
Lokasi untuk digunakan		an di dalam ruangan, ketinggian 20	100m atau kurang
Tegangan tertahan	IEC 61010-1, IEC 61010-2-032, Pengukuran CAI III (6000 5350 V AC/5 dtk antara Rahang - enklosur, enklosur - terminal keluaran, Rahang – terminal keluaran		5350 V AC/5 dtk antara sirkuit – sensor
Resistansi insulasi	50 MΩ atau lebih/1000 V antara Rahang – enklosur, enklosur – terminal keluaran, Rahang – terminal keluaran		50 MΩ atau lebih/1000 V antara sirkuit – sensor
Ukuran konduktor maks.	Sekitar Φ40 mm	Sekitar Φ68 mm	Sekitar Φ150 mm
Dimensi	128(P) × 81(L) × 36(T) mm	186(P) × 129(L) × 53(T) mm	111(P) × 61(L)× 43(T) mm (tonjolan tidak termasuk)
Panjang kabel	Sekitar 3 m		Bagian sensor: Sekitar 2 m Kabel keluaran: Sekitar 1 m
Terminal keluaran	MINI DIN 6PIN		
Bobot	Sekitar 260 g	Sekitar 510 g	8129-1: Sekitar 410 g 8129-2: Sekitar 680 g 8129-3: Sekitar 950 g
Aksesori	Panduan petunjuk, Penanda kabel		Panduan petunjuk, Kabel keluaran (M-7199), Casing pembawa
Opsi	7146 (Ф4 Steker Banana	a), 7185 (Kabel ekstensi)	

	< MODEL8130 >	< MODEL8133 >	< MODEL8135>
Arus terukur	1000 A rms AC (1850 A peak)	3000 A rms AC (5515 A Peak)	50 A rms AC (92 A Peak)
Tegangan keluaran	0 – 500 mV AC (500 m V AC/1000 A AC): 0,5 mV/ A	0 – 500 mV AC (500 mV AC/3000 A AC): 0,167 mV/ A	0 – 500 mV AC (500 mV AC/50 A AC): 10 mV/A
Rentang pengukuran	0 – 1000 A rms AC	0 – 3000 A rms AC	0 – 50 A rms AC
Akurasi (masukan sinus)	±0,8%rdg ±0,2 mV (45 – 65 Hz) ±1,5%rdg ±0,4 mV (40Hz – 1 kHz)	±1,0%rdg ±0,5 mV (45 – 65 Hz) ±1,5%rdg ±0,5 mV (40 Hz – 1 kHz)	±1,0%rdg ±0,5 mV (45 Hz – 65 Hz) (0-50 A) ±1,5%rdg ±0,5 mV (40 Hz – 300 Hz) (0-20 A) ±1,5%rdg ±0,5 mV (300 Hz – 1 kHz) (0-5 A)
Karakteristik fase	dalam ±2,0° (45 – 65 Hz) dalam ±3,0°(40 – 1 kHz)		dalam ±3,0°(45 – 65 Hz) dalam ±4,0°(40 – 1 kHz)
Rentang Suhu & kelembapan (akurasi terjamin)	23±5°C, kelembapan relatif 85% atau kurang (tanpa kondensasi)		
Rentang suhu pengoperasian	-10 - 50°C, kelembapan relatif 85% atau kurang (tanpa kondensasi)		
Rentang suhu penyimpanan	-20 hingga 60°C, kelembapan relatif 85% atau kurang (tanpa kondensasi)		
Masukan yang diizinkan	1300 A rms AC (50/60 Hz)	3900 A rms AC (50/60 Hz)	65 A rms AC (50/60 Hz)
Impedansi keluaran	Sekitar 100 Ω atau kurang		
Lokasi untuk digunakan	Penggunaan di dalam ruangan, ketinggian 2000m atau kurang		
Standar yang berlaku	IEC 61010-1, IEC 61010-2-032 CAT III (600V)/CAT IV (300V) Tingkat polusi 2 IEC61326		
Tegangan tertahan	5160 V AC/5 dtk Antara sirkuit – sensor		
Resistansi insulasi	50 MΩ atau lebih/1000 V Antara sirkuit – sensor		
Ukuran konduktor maks.	Sekitar ø110 mm (maks.)	Sekitar ø170 mm (maks.)	Sekitar ø75 mm (maks.)
Dimensi	65(P)×25(L)×22(T) mm		
Panjang kabel	Bagian sensor: Sekitar 2,7 m Kabel keluaran: Sekitar 0,2 m		
Terminal keluaran	MINI DIN 6PIN		
Bobot	Sekitar 180 g	Sekitar 200 g	Sekitar 170 g
Aksesori	Panduan petunjuk, Penanda kabel, Casing pembawa		
Opsi			

DISTRIBUTOR

Kyoritsu berhak mengubah spesifikasi atau desain yang dijelaskan dalam panduan ini tanpa pemberitahuan dan tanpa kewajiban.

KYORITSU ELECTRICAL INSTRUMENTS WORKS, LTD.

2-5-20,Nakane, Meguro-ku, Tokyo, 152-0031 Japan Phone: +81-3-3723-0131 Fax: +81-3-3723-0152 Factory: Ehime,Japan

www.kew-ltd.co.jp