

เครื่องทดสอบมัลติฟังก์ชัน

KEW 6516/6516BT

รายการ

1.	การทดสอบอย่างปลอดภัย	1
2.	. เค้าโครงเครื่องมือ	З
З.	. อุปกรณ์เสริม	5
4.	. คุณสมบัติ	7
5.	. ข้อกำหนดจำเพาะ	9
	5.1 ข้อกำหนดจำเพาะของการวัด	9
	5.2 ข้อกำหนดจำเพาะทั่วไป	14
	5.3 มาตรฐานที่เกี่ยวข้อง:	15
	5.4 ความไ้ม่แน่นอนในการทำงาน	16
	5.5 สัญลักษณ์และเครื่องหมายที่แสดงบน LCD	18
6.	. โหมดการตั้งค่า	19
7.	เริ่มต้นใช้งาน	20
	7.1 การติดปลายโลหะ/อะแดปเตอร์สำหรับสายทดสอบ	20
	7.2 การตรวจสอบแรงดันไฟฟ้าแบตเตอรี่	21
	7.3 การปรับนาฬิกา	21
	7.4 ฟังก์ชันวิธีใช้	22
8	. การูทดสอบความต่อเนือง (ความต้านทาน)	23
	8.1 ขั้นตอนการทดสอบ	23
	8.2 ฟังก์ชันออด 2Ω (◀ฺ୬))	25
	8.3 การสลับกระแสไฟฟ้าทดสอบ	25
	8.4 ฟังก์ชัน PAT	25
9.	. การทดสอบฉนวน	27
	9.1 วิธีการวัด	28
	9.2 การวัดแบบต่อเนื่อง (การวัดความต้านทานของฉนวน)	30
	9.3 ลักษณะแรงดันไฟฟ้าของขัวการวัด	30
	9.4 การวัด DAR/ PI, การแสดงค่า 1 นาที	31
	9.5 ฟังก์ชัน PAT	31
	9.6 การทดสอบ SPD (วารีสเตอร้)	
10	J. LUUP/ PSC/PFC	33
	10.1 หลักการวัด	
	10.2. วธการวดสาหรบกระแสไฟฟ้าสูงของ LOOP	
	10.3. วธการวดสาหรบ LUUP ATT (Anti trip technology)	
11	10.4 คาขดจากด Loop	46
11	I. การทดสอบ KUD	48
	11.1 หลุกการวด KCD	
	II.∠ หลาการวัด UC	50
	11.3 351753087850 KCU	50
	II.4 ทำริพิเดลิยบ Auto	53
	וו.ס אטווטע אמא (variable current value) 11 ה בע פרח	עכייייייי ע⊐
10	1.0 Ev กอบ	54 ۲ ۲
12	2. 11 เงิทเตย ปิด เปียเนี	4∪ ⊿⊐
	เ2.1 ทศากา เรียนของเอิ่ม 12.2 กระกัดการเข้างเขางเลิ่ม	4 כ ر ح
	าะ.ะ บางงายทาง เพยาเหยาเหยน	ס4 בב
10	า 2.3 งาก เง งตุลายสาย 3 การทดสอบลำคับแฟส	55 57
IC.	דפר שרפוע אין דו רע האין אין דו רע דער אין דע דער דער אין דע דער דער דער דער דער דער דער דער דער	J/

14. โวลต์	
15. ทัชแพด	
16. ฟังก์ชันหน่วยความจำ	59
16.1 วิธีการบันทึกข้อมูล	59
16.2 เรียกคืนข้อมูลที่บั้นทึกไว้	60
16.3 ลบข้อมูลที่บั้นทึกไว้	61
17. ถ่ายโอนข้อมูลที่จัดเก็บไว้ไปยัง PC	62
ี่ 18. การสือสารผ้าน Bluetooth (KEW 6516BT เท่านั้น)	63
18.1 การสื่อสารผ่าน Bluetooth	63
18.2 KEW Smart Advanced	64
19. การปิดอุัตโนมัติ,	64
20. การเปลี่ยนแบตเตอรึ่และฟิวส์	65
20.1 การเปลี่ยนแบตเตอรี่	65
20.2 การเปลี่ยนฟิวส์	65
21. การซ่อมบำรุง	66
22. กระเป๋าและชุดสายรัด	67

KEW 6516/6516BT ผนวกรวม Anti Trip Technology (ATT) ซึ่งเป็น RCD บายพาสทาง อิเล็กทรอนิกส์เมื่อทำการทดสอบความต้านทานของลูป ซึ่งช่วยประหยัดเวลาและเงินได้โดยไม่ต้อง ถอด RCD ออกจากวงจรในระหว่างการทดสอบและเป็นขั้นตอนการทำงานที่ปลอดภัย เมื่อฟังก์ชัน ATT ถูกเปิดใช้งาน กระแสไฟการทดสอบที่ 15 mA หรือน้อยกว่าจะถูกนำไปใช้ระหว่างสายจ่ายไฟ และสายดิน ซึ่งทำให้สามารถทำการวัดอิมพีแดนซ์ของลูปโดยไม่ตัดวงจร RCD ที่พิกัด 30 mA และสูง กว่าได้

ATT รองรับการวัดโดยใช้สายไฟ 3 สาย: สายจ่ายไฟ สายดิน และสายนิวตรอล สายจ่ายไฟและ สายดิน

โปรดอ่านคู่มือการใช้งานนี้อย่างละเอียดก่อนเริ่มใช้อุปกรณ์นี้

1. การทดสอบอย่างปลอดภัย

อุปกรณ์นี้ได้รับการออกแบบ ผลิต และทดสอบตามมาตรฐาน IEC 61010: ข้อกำหนดด้านความ ปลอดภัยและอุปกรณ์ไฟฟ้าสำหรับการวัด และส่งมอบในสภาวะที่ดีที่สุดหลังจากผ่านการทดสอบ ควบคุมคุณภาพ คู่มือการใช้งานมีคำเตือนและกฏความปลอดภัยซึ่งผู้ใช้ต้องปฏิบัติตามเพื่อให้แน่ใจว่า การใช้งานเครื่องมือจะมีความปลอดภัย และเพื่อรักษาเครื่องมือให้อยู่ในสภาวะที่ปลอดภัยเสมอ ดังนั้น โปรดให้อ่านคู่มือการใช้งานเหล่านี้ก่อนใช้เครื่องมือ

\land อันตราย

- อ่านและทำความเข้าใจคำแนะนำที่อยู่ในคู่มือนี้ก่อนเริ่มต้นใช้อุปกรณ์
- เก็บคู่มือนี้ไว้ในที่ที่เข้าถึงได้สะดวกเพื่อให้สามารถเปิดอ่านคู่มือได้อย่างรวดเร็วเมื่อจำเป็น
- ควรใช้เครื่องมือนี้เฉพาะในการใช้งานที่เหมาะสมกับเครื่องมื้อเท่านั้น

 ทำความเข้าใจและปฏิบัติตามคำแนะนำด้านความปลอดภัยทั้งหมดที่อยู่ในคู่มือนี้ การปฏิบัติตามคำแนะนำข้างต้น ถือเป็นสิ่งจำเป็น การไม่ปฏิบัติตามคำแนะนำข้างต้นอาจนำไปสู่ การบาดเจ็บ เครื่องมือเสียหาย และ/หรือทำให้อุปกรณ์เสียหายในระหว่างการทดสอบได้ KYORITSU จะไม่รับผิดชอบต่อความเสียหายใด ๆ ที่เกิดจากการใช้เครื่องมือโดยไม่ปฏิบัติตามคำเตือนเหล่านี้

สัญลักษณ์ $extsf{ }$ ที่แสดงบนเครื่องมือ หมายความว่าผู้ใช้ต้องศึกษาส่วนที่เกี่ยวข้องในคู่มือนี้เพื่อการใช้งาน เครื่องมืออย่างปลอดภัย ถือเป็นสิ่งสำคัญที่ต้องอ่านคำแนะนำเพื่อทำความเข้าใจกับส่วนเนื้อหาใน คู่มือที่มีสัญลักษณ์ $extsf{ }$ ปรากฏอยู่

- \land อันตราย: หมายถึงสภาวะและการกระทำที่อาจทำให้เกิดการบาดเจ็บสาหัสหรือเสียชีวิตได้
- ${\,
 m ilde M}$ \land คำเตือน: หมายถึงสภาวะและการกระทำที่สามารถทำให้เกิดการบาดเจ็บสาหัสหรือเสียชีวิตได้
- ชื่อควรระวัง: หมายถึงสภาวะและการกระทำที่สามารถทำให้เกิดการบาดเจ็บหรือเครื่องมือเสียหาย
 ได้
 ได้

\land อันตราย

- ห้ามใช้แรงดันไฟฟ้าสูงกว่า 600 V รวมถึงแรงดันไฟฟ้าไปยังดิน ผ่านขั้วของเครื่องมือนี้
- KEW 6516/6516BT มีพิกัดอยู่ที่ CAT IV 300 V/ CAT III 600 V อย่าทำการวัดภายใต้สถานการณ์ เกินกว่าหมวดหมู่การวัดที่ออกแบบไว้
- อย่าพยายามทำก[้]ารวัดในสถานการณ์ที่มีก๊าซไวไฟ มิฉะนั้นการใช้เครื่องมืออาจทำให้เกิดประกายไฟ ซึ่งอาจนำไปสู่การระเบิดได้
- ห้ามใช้เครื่องมื้อนี้ หากพบว่าพื้นผิวของเครื่องมือเปียกหรือในขณะที่มือของคุณเปียก
- ใช้ความระวังอย่าลัดวงจรของสายไฟด้วยส่วนที่เป็นโลหะของสายทดสอบในระหว่างการวัด ซึ่งอาจ ทำให้เกิดการบาดเจ็บได้
- ห้ามเปิดฝาครอบช่องใส่แบตเตอรี่ในระหว่างทำการวัด
- ควรใช้เครื่องมือนี้เฉพาะในการใช้งานที่เหมาะสมกับเครื่องมือเท่านั้น มิฉะนั้นฟังก์ชันการทำงานของ เครื่องมืออาจไม่ทำงาน และอาจทำให้เกิดความเสียหายของเครื่องมือหรือการบาดเจ็บสาหัสส่วน บุคคล

• ต[้]รวจสอบการทำงานที่ถูกต้องจากแหล่งที่รู้จักก่อนทำงานใดๆ ที่เป็นผลมาจากการระบุของเครื่องมือ

\land คำเตือน

- อย่าใช้เครื่องมือหรือสายทดสอบหากมีสภาวะผิดปกติ เช่น ฝาครอบแตกหักหรือสังเกตชิ้นส่วน โลหะที่เปลือยออก
- อันดับแรก ให้เชื่อมต่อสายทดสอบเข้ากับเครื่องมืออย่างแน่นหนา จากนั้นกดสวิตช์ทดสอบ
- อย่าติดตั้งอะไหล่ทดแทนหรือทำการปรับเปลี่ยนใด ๆ กับเครื่องมือด้วยตัวเอง ส่งเครื่องมือ ไปยังผู้จัดจำหน่าย KYORITSU ในท้องถิ่นเพื่อซ่อมแซมหรือปรับเทียบใหม่
- อย่าทำการเปลี่ยนแบตเตอรี่ หากพบว่าพื้นผิวของเครื่องมือเปียก
- เชื่อมต่อสายทดสอบแต่ละเส้นเข้ากับขั้วที่เกี่ยวข้องอย่างมั่นคง
- หยุดใช้สายทดสอบ ถ้าแจ็คเก็ตด้านนอกเสียหาย และมองเห็นโลหะภายในหรือแจ็คเก็ตสี
- ก่อนเปิดฝาครอบช่องใส่แบตเตอรี่เพื่อเปลี่ยนแบตเตอรี่หรือเปลี่ยนฟิวส์ ตรวจสอบว่าไม่มีสาย ทดสอบใดๆ เชื่อมต่อกับเครื่องมือและเครื่องมือปิดเครื่องอยู่
- อย่าบิดสวิต[ั]ช์แบบหมุนในขณะที่สายทดสอบเชื่อมต่อกับอุปกรณ์ภายใต้การทดสอบ

\land ข้อควรระวัง

- ตรวจสอบให้แน่ใจว่าได้ปรับสวิตช์แบบหมุนไปยังตำแหน่งที่เหมาะสมก่อนทำการวัดเสมอ
- ควรปิดเครื่องมือเสมอหลังจากใช้งาน หากต้องการจัดเก็บเครื่องมือไว้และจะไม่ใช้งานเป็น เวลานาน ให้ถอดแบตเตอรื่ออก
- อย่าให้เครื่องมือโดนแสงแดดโดยตรง และอย่าวางไว้ในพื้นที่ที่มีอุณหภูมิสูง ความชื้น หรือน้ำค้าง
- ใช้ผ้าชุบน้ำยาทำความสะอาดที่ค่าเป็นกลางแล้วบิดหมาดเพื่อทำความสะอาดเครื่องมือ อย่าใช้ สารละลายที่มีฤทธิ์กัดกร่อนหรือตัวทำละลาย
- เครื่องมือนี้ไม่กันน้ำ อย่าให้เครื่องมือนี้เปียกน้ำ มิฉะนั้นมันอาจทำให้เครื่องมือทำงานผิดปกติได้
- ถ้าเครื่องมือเปียก เช็ดให้แห้งก่อนใส่ไว้ในที่เก็บ
- เก็บมือและนิ้วของคุณไว้ข้างหลังอุปกรณ์ป้องกันนิ้วมือในระหว่างการวัด

2. เค้าโครงเครื่องมือ

ช่องเสียบอินพุต

รูปที่ 2-2

	ฟังก์ชัน	ขั้ว
	ขั้วสำหรับ: INSULATION, CONTINUITY, LOOP, RCD, VOLTS	L: Line
(1)		PE: สายดินป้องกัน
		N: นิวตรอล (สำหรับ LOOP, RCD)
	2) ขั้วสำหรับ PHASE ROTATION	L1: สายจ่ายไฟ 1
(2)		L2: สายจ่ายไฟ 2
		L3: สายจ่ายไฟ 3
		H(C): ขั้วสำหรับหลักดินเสริม (กระแสไฟฟ้า)
(3)	ขั้วสำหรับ EARTH	E: ขั้วสำหรับสายดินภายใต้การทดสอบ
(4)	อะแด็ปเตอร์ทางเลือก	พอร์ตการสื่อสารสำหรับ MODEL 8212USB

3. อุปกรณ์เสริม

• สายทดสอบ

(1) สายทดสอบของระบบหลัก (MODEL 7218A)

รูปที่ 3-1 แสดง MODEL 7218A ที่มีปลั๊ก SHUKO แบบยุโรป: รูปร่างของปลั๊กอาจแตกต่างกันขึ้นอยู่กับประเทศหรือ ภูมิภาค สายทดสอบใดๆ ต่อไปนี้ถูกเลือกและบรรจุมาในกล่องโดยสอดคล้องกับปลายทางการจัดส่ง

- MODEL 7222A (AU) สำหรับปลั๊กแบบออสเตรเลีย
- MODEL 7187A (UK) สำหรับปลั๊กแบบประเทศอังกฤษ
- MODEL 7221A (SA) สำหรับปลั๊กแบบแอฟริกาใต้

(2) หัวทดสอบพร้อมรีโมทสวิตช์ (MODEL 7281)

* 1 อุปกรณ์ป้องกันนิ้วมือเป็นขึ้นส่วนที่ให้การป้องกันไฟฟ้าช็อต และช่วยรับประกันระยะที่สั้นที่สุดที่ ต้องการและระยะห่างตามผิวฉนวน (4) ตัวนำทดสอบดิน (MODEL 7228A) และ หลักดินเสริม

4. คุณสมบัติ

เครื่องทดสอบมัลติฟังก์ชัน KEW 6516/6516BT มีฟังก์ชันทดสอบ แปดรายการในหนึ่งเครื่อง

- 1 การทดสอบความต่อเนื่อง
- 2 การทดสอบความต้านทานของฉนวน
- 3 การทดสอบความต้านทานของลูป (การวัดกระแสไฟฟ้าสูง, การวัดด้วย Anti Trip Tech. (ATT)) 4 การทดสอบกระแสไฟฟ้าลัดวงจรที่เป็นไปได้ (บนฟังก์ชันอิมพีแดนซ์ของลูป)
- 5 การทดสอบ RCD
- 6 การทดสอบแรงดันไฟฟ้า
- 7 การทดสอบลำดับเฟส
- 8 การทดสอบสายดิน

ฟังก์ชันความต่อเนื่องมีคุณสมบัติดังต่อไปนี้:

การป้องกันฟิวส์	ฟังก์ชันความต่อเนื่องมีฟังก์ชันการป้องกันฟิวส์เพื่อป้องกันฟิวส์ระเบิดใน การทำงานที่มีกระแสไฟฟ้าไหลผ่าน ด้วยฟังก์ชันนี้ ฟิวส์แทบจะไม่ระเบิด ในขณะวัดความต่อเนื่องบนตัวนำที่มีกระแสไฟฟ้า
ความต่อเนื่องเป็นโมฆะ อนุญาตให้หักลบการต้านทานของสายทดสอบออกจากการวัด ต่อเนื่อง	
การทดสอบ 15mA	ไม่ใช่แค่เพียง 200 mA เท่านั้น แต่ยังรองรับ 15 mA ด้วย
ความต่อเนื่องของออด เสียงออดที่ 2 Ω หรือน้อยกว่าที่ ฟังก์ชันความต่อเนื่อง 2Ω (สลับเปิดหรือปิดได้)	

ฟังก์ชันฉนวนมีคุณสมบัติดังต่อไปนี้:

ปล่อยประจุอัตโนมัติ	ประจุไฟฟ้าที่กักเก็บไว้ในวงจรเก็บประจุไฟฟ้า จะถูกปล่อยโดย อัตโนมัติหลังจากทดสอบโดยการปล่อยสวิตช์ทดสอบ
การทดสอบ SPD	การวัดแรงดันไฟฟ้าพังทลายสำหรับอุปกรณ์ป้องกันไฟฟ้ากระชาก
(วาริสเตอร์)	(วาริสเตอร์)

้ฟังก์ชันอิมพีแดนซ์ของลูปมีคุณสมบัติดังต่อไปนี้:

การทดสอบ ATT	ช่วยให้สามารถทำการทดสอบความต้านทานของลูปโดยไม่ต้องตัดวงจร RCD ที่พิกัด 30 mA หรือสูงกว่า (ใช้ได้กับการวัดแบบ 3 หรือ 2 สาย)
การทดสอบ LOOP 0.001Ω	การวัดความละเอียดสูง, 0.001 Ω ที่กระแสไฟทดสอบ 25 A

ฟังก์ชันทดสอบ RCD มีคุณสมบัติดังต่อไปนี้:

การทดสอบ RCD ประเภท B	สามารถทดสอบ RCD ประเภท B ของกระแสไฟฟ้า DC ที่ตกค้าง
VAR	กระแสไฟทดสอบจะแปรผันตามช่วง RCD
(กระแสไฟฟ้าทดสอบแปรผัน)	
การทดสอบ RCD แบบ	การทดสอบอัตโนมัติในลำดับต่อไปนี้:
AUTU	×1/2(0°)→×1/2(180°)→×1(0°)→×1(180°)→×5(0°) →×5(180°)
EV RCD	การทดสอบ RCD เครื่องชาร์จ EV

คุณสมบัติต่อไปนี้มีอยู่ในฟังก์ชันการทดสอบทั้งหมด

Touch Pad	ให้การเตือนเมื่อสัมผัสกับ Touch Pad ถ้าขั้วต่อ PE ถูกเชื่อมต่อกับสาย จ่ายไฟโดยผิดพลาด
ฟังก์ชันหน่วยความจำ	บันทึกข้อมูลที่วัดได้ลงในหน่วยความจำภายใน สามารถแก้ไขข้อมูลบน PC โดยใช้อะแดปเตอร์การสื่อสาร MODEL 8212USB และซอฟต์แวร์ PC "KEW Report"
Bluetooth (KEW 6516BT เท่านั้น)	การตรวจสอบระยะไกลและบันทึกข้อมูลบนอุปกรณ์แท็บเล็ต Bluetooth

5. ข้อกำหนดจำเพาะ

5.1 ข้อกำหนดจำเพาะของการวัด

VOLTS

ช่วง	300.0/ 600 V (การกำหนดช่วงอัตโนมัติ)	
ช่วงการแสดงผล	แรงดันไฟฟ้า : 2.0 – 314.9 V, 240 – 629 V ความถี่: 40.0 – 70.0 Hz (แสดงผลที่ 2 V หรือสูงกว่า)	
ช่วงการวัด (ช่วงความแม่นยำที่ รับประกัน)	แรงดันไฟฟ้า : 2 – 600 V ความถี่: 45 – 65 Hz	
ความแม่นยำ	แรงดันไฟฟ้า: ±2%rdg±4dgt ความถี่: ±0.5%rdg±2dgt	

* การตรวจจับ True-RMS เพิ่ม ± 1%rdg ไปยังความแม่นยำที่แสดงไว้สำหรับคลื่นไซน์ที่ไม่ใช่ CF<2.5 (ค่าจุดยอด 850 V หรือน้อยกว่า)

PHASE ROTATION

ช่วงการวัด	48 – 600 V / 45 – 65 Hz	
เกณฑ์การตัดสิน	ลำดับที่ถูกต้อง: แสดงสัญลักษณ์ตามเข็มนาฬิกาและ "1, 2, 3" ลำดับที่ย้อนกลับ: แสดงสัญลักษณ์ทวนเข็มนาฬิกาและ "3, 2, 1"	

EARTH

	การวัดที่แม่นยำ	การวัดแบบง่าย
ช่วง	20.00/ 200.0/ 2000 Ω (การกำหนดช่วงอัตโนมัติ)	
ช่วงการแสดงผล	0.00 – 20.99 Ω 16.00 – 209.9 Ω 160.0 – 2099 Ω	
ช่วงการวัด (ช่วงความแม่นยำที่ รับประกัน)	0 – 2000 Ω	
ความแม่นยำ	ช่วง 20Ω: ±2%rdg±0.08 Ω ช่วงอื่นๆ: ±2%rdg±3dgt (ความต้านทานดินเสริม: 100 Ω)	±2%rdg±0.08 Ω ช่วงอื่นๆ: ±2%rdg±3dgt
กระแสไฟขาออก	ช่วง 20Ω: ประมาณ 3 mA ช่วง 200Ω: ประมาณ 1.7 mA ช่วง 2000Ω: ประมาณ 0.7 mA ความถี่: 825 Hz	

CONTINUITY

ช่วง	20.00/200.0/2000 Ω (การกำหนดช่วงอัตโนมัติ)
	0.00 – 20.99 Ω
ช่วงการแสดงผล	16.0 – 209.9 Ω
	160 – 2099 Ω
ช่วงการวัด (ช่วงความแม่นยำที่รับประกัน)	0 – 2000 Ω
ความแม่นยำ (เปิดใช้งาน NULL)	±2.0%rdg±8dgt
แรงดันไฟฟ้าวงจรเปิด (DC)	7 – 14 V
กระแสไฟฟ้าทดสอบ	การทดสอบ 200 mA: 200 mA หรือมากกว่า (2 Ω หรือน้อยกว่า) การทดสอบ 15 mA: 15 mA±3 mA (ลัดวงจร)

เปิดใช้งาน ถ้าค่า NULL ที่ตั้งไว้ล่วงหน้าอยู่ที่ 9 Ω หรือน้อยกว่า
 ออด 2Ω: เสียงออดเมื่อความต้านทานที่วัดได้คือ 2 Ω หรือน้อยกว่า

INSULATION

(1) ความต้านทานของฉนวน

ช่วงแรงดันไฟฟ้า เอาต์พุต	100V	250V	500V	1000V
ช่วง	2.000/20.00/200.0 MΩ การกำหนดช่วงอัตโนมัติ		20.00/200.0/1000 MΩ การกำหนดช่วงอัตโนมัติ	20.00/200.0/2000 MΩ การกำหนดช่วงอัตโนมัติ
ช่วงการแสดงผล	0.000 – 2.099 MΩ 1.60 – 20.99 MΩ 16.0 – 209.9 MΩ		0.00 – 20.99 ΜΩ 16.0 – 209.9 ΜΩ 160 – 1049 ΜΩ	0.00 – 20.99 ΜΩ 16.0 – 209.9 ΜΩ 160 – 2099 ΜΩ
ช่วงการวัด (ช่วงความแม่น ยำที่รับประกัน)	0 – 200 ΜΩ		0 – 1000 ΜΩ	0 – 2000 MΩ
ดวามแม่นยำ	ช่วง 2.000MΩ: ±2%rdg±6dgt ช่วง 20.00MΩ: ±2%rdg±6dgt ช่วง 200MΩ: ±5%rdg±6dgt		ช่วง 20.00MΩ: ± ช่วง 200.0MΩ: ±	±(2%rdg+6dgt) ±(2%rdg+6dgt)
			ช่วง 1000MΩ: ±(5%rdg+6dgt)	ช่วง 2000MΩ: ±(5%rdg+6dgt)
พิกัดกระแสไฟ	1.0 – 1.2 mA ที่ 100 kΩ	1.0 – 1.2 mA ที่ 250 kΩ	1.0 – 1.2 mA ที่ 500 kΩ	1.0 - 1.2 mA ที่ 1 MΩ

- แรงดันไฟฟ้าวงจรเปิด 100 120% ของแรงดันไฟฟ้าเอาต์พุตตามพิกัด
- กระแสไฟฟ้าลัดวงจร: ภายใน 1.5 mA
- เครื่องทดสอบจะให้แรงดันไฟฟ้าติดลบจากขั้ว LINE และแรงดันไฟฟ้าบวกจากขั้ว EARTH
- โหลดความจุไฟฟ้าสูงสุด: 1 µF โหลดความจุไฟฟ้าที่ชาร์จไฟได้ภายใน 10 วินาที หลังการทดสอบ (IEC 61010-2-034)
- เสียงบี้ปดังไม่ต่อเนื่องในระหว่างการวัดในช่วง 1000 V

(2) การทดสอบ SPD

ช่วง	1000 V
ช่วงการแสดงผล	1049 V
ช่วงการวัด	0 - 1049 V
ความแม่นยำ	±5%rdg±5dgt
อัตราการเพิ่มของแรงดันไฟฟ้า	100 V / วินาที
ขั้นการเพิ่มแรงดันไฟฟ้า	เพิ่มขึ้นทีละ 1 V
ค่าเกณฑ์สำหรับการตรวจจับกระแสไฟฟ้า	1 mA

LOOP ATT

ฟังก์ชัน		3 สาย L-PE	2 สาย L-PE	
อินพุตระบบหลัก ช่วงแรงดันไฟฟ้า		100 – 260 V 50/ 60 Hz (L-N < 20 Ω)	48 – 260 V 50/ 60 Hz	
	LOOP	20.00/200.0/2000 Ω (การกำหนดช่วงอัตโนมัติ)		
ชวง	PFC/PSC	2000 A/ 20 kA	2000 A/ 20 kA(PFC เท่านั้น)	
ช่วงการแสดง	LOOP	0.00 – 20.99 Ω 21.0 – 209.9 Ω 210 – 2099 Ω	0.00 –20.99 Ω 21.0 –209.9 Ω 210 –2099 Ω	
ผล	PFC/PSC	0 – 2099 A 2.10 – 20.99 kA	0 – 2099 A 2.10 – 20.99 kA (PFC เท่านั้น)	
ช่วงการวัด (ช่วงความแม่น ยำที่รับประกัน)	LOOP	0 – 2000 Ω	0 – 2000 Ω	
ความแม่นยำ	LOOP	230 V+10%-15%:±(3%rdg+6dgt) อื่นๆ นอกเหนือจากแรงดันไฟฟ้า ข้างต้น: ±(3%rdg+8dgt)	230 V+10%-15%:±(3%rdg+10dgt) อื่นๆ นอกเหนือจากแรงดันไฟฟ้าข้างต้น: ±(3%rdg+15dgt)	
	PFC/PSC	ขึ้นอยู่กับความแม่นยำของก	ารวัดแรงดันไฟฟ้าและ LOOP	
กระแสไฟฟ้าทดสอบ @230V		L-N:6 A/60 ms N-PE:10 mA (5.3 Hz)	L-PE: 15 mA	

* ถ้าการอ่านค่าไม่เสถียร อาจมีการใช้ตัวเลขช่วงบนหนึ่งหลักแทนช่วงการแสดงผลที่จะใช้

LOOP HIGH

ฟังก์ชัน		L-PE0.01ΩRes L-PE0.001ΩRes		L-N/L-L
อินพุตระบบหลัก		48 – 260 V 100 – 260 V		48 - 500 V
ช่วงแรงดัง	่ แฟฟ้า	50/ 60 Hz	50/ 60 Hz	50/ 60 Hz
	LOOP	20.00/ 200.0/ 2000 Ω	2.000 Ω	20.00 Ω
ช่วง	PFC/PSC	2000 A/ 20 kA	2000 A/ 50 kA	2000 A/ 20 kA
		(PFC เท่านั้น)	(PFC เท่านั้น)	(PSC เท่านั้น)
		0.00 - 20.99 Ω		
	LOOP	21.0 - 209.9 Ω	0.000 - 2.099	0.00-20.99 Ω
ช่วงการ		210 –2099 <u>Ω</u>		
แสดงผล		0 – 2099 A	0 - 2099 A	0 - 2099 A
	PFC/PSC	2.10 - 20.99 kA	2.10 - 52.49 kA	2.10 - 20.99 kA
		(PFC เท่านั้น)	(PFC เท่านั้น)	(PSC เท่านั้น)
ช่วงการวัด				
(ช่วงความ แม่นยำที่	LOOP	0 – 2000 Ω	0 – 2 Ω	0 – 20 Ω
รับประกัน)				
		230 V+10%-15%:		230 V+10%-15%:
		±(3%rdg+4dgt)	230 V+10%-15%:	±(3%rdg+4dgt)
		100 V หรือน้อยกว่า	±(3%rdg+25 mΩ)	100 V หรือน้อยกว่า
	LOOP	±(5%rdg+15dgt)	อื่นๆ นอกเหนือจาก	±(5%rdg+15dgt)
ความแมนยา		อื่นๆ นอกเหนือจาก	แรงดันไฟฟ้าข้างต้น:	อื่นๆ นอกเหนือจาก
		แรงดันไฟฟ้าข้างต้น:	±(5%rdg+35 mΩ)	แรงดันไฟฟ้าข้างต้น:
		±(3%rdg+8dgt)		±(3%rdg+8dgt)
	PFC/PSC			ไฟฟ้าและ LOOP
¹ อเช่น		20 Ω: 6 A/ 20 ms		
าเระแลเพพ'	าทตลอบ	200 Ω: 0.5 A/ 20 ms	25 A/ 20 ms	6 A/ 20 ms
@230V		2000 Ω: 15 mA/ 500 ms		

* ถ้าการอ่านค่าไม่เสถียร อาจมีการใช้ตัวเลขช่วงบนหนึ่งหลักแทนช่วงการแสดงผลที่จะใช้

RCD

(1) ช่วงแรงดันไฟฟ้าขาเข้าของระบบุหลัก: 100 V – 260 V 50/ 60 Hz

้สำหรับประเภท AC และ RCD ที่มีพิกัด 100 mA หรือสูงกว่า: 190 – 260 V (2) ดวามแม่นยำ

()							
~ ປຽຍເດທ		290	กระแสไฟฟ้าทำงานตกค้าง	กระแสไฟฟ้าทดสอบ		ระยะเวลา	
โหมด			ตามอัตรา (mA)	ค่ากระแสไฟฟ้า	ความแม่นยำ	เวลา	0000000000000000
	RU	J	(l⊿n)	(mA) rms	@230 V	การวัด	พงเพณฑยา
		G	10/30/100/300/500/100		Q04 a 204		
	AC		0	l⊿n×1/2	-0%0 \$IN -2%0 VAD: 1006 ถึง 006		
		S	10/30/100/300/500		VAN-1070 IN 070		
×1/2	∧ /⊏	G	10/30/100/300/500	L4px0.25	1006 ನೆ.1006	2000 ms	
	A/F	S	10/30/100/300/500	1211×0.33	-10-0 610 0-90		
	D	G	10/30/100/300	$1/10\times1/2$	1006 ನೆ.1006		
	D	S	10/30/100/300	1211/17/2	-10-0 610 0-90		
		G	10/30/100/300/500/100		+2% ถึง +8%		
	AC		0	l⊿n	VAR: 0% ถึง		เวลาการตัด
		S	10/30/100/300/500		+10%		วงจร
		G	10/30/100/300/500	10 mA: I⊿n×2	~	G:550 ms	±(1%+2 ms)
×1	A/F	S	10/20/100/200/500	กระแสไฟฟ้า	0% ถึง +10%	S:1000 ms	
		_	10/30/100/300/300	อินๆ: I⊿n×1.4			เวลาเวลาวัด
	В	G	10/30/100/300	l⊿nx2	0% ถึง +10%		±3% ของ
		S	10/30/100/300		a, a a a a a a a a a a a a a a a a a a		F.S.
	EV	'	6	l⊿n	0% ถึง +10%	10.5 s	
AC		G	10/30/100	l⊿n×5	+2% ถึง +8% VAR: 0% ถึง		
	AC	S	10/30/100				
		_			+10%		
×5	A/F	G	10/30/100	l⊿n×5×1.4	0% ถึง +10%	410 ms	
		S	10/30/100				
	В	G	10/30	l⊿n×2×5	0% ถึง +10%		
		S	10/30				
	AC	G	10/30/100/300/500	l⊿n	-4% ถึง +4%	đ	
		S	10/30/100/300/500		1,0000	ทีละ 10%	
การเพิ่ม	A /F	G	10/30/100/300/500	10 mA: l⊿n×2	100/ 5 . 100/	G: 300 ms	
ระดับ A/I	A/F	S	10/30/100/300/500	กระแลเพพา อื่นๆ: I⊿n×1.4	-เบ‰ ถง +เบ‰	5: 500 ms	ູ
20% ถึง 110% B	G	10/30/100/300			ทีละ 2%	เวลาการวัด	
	В	S	10/30/100/300	I⊿n×2	-10% ถง +10%	^{1%} 150 ms	±3%ของ ธุร
(EV.30%						ทีละ 2%	1.5.
ถึง 100%)						500 ms	
	EV		6	l⊿n	-10% ถึง +10%	(คงที่ 10 ร	
						เฉพาะที่	
						100%)	

•การทดสอบ AUTO:X1/2(0°)→X1/2(180°)→X1(0°)→X1(180°)→X5(0°)→X5(180°) การทดสอบของ "X5" จะถูกข้ามเมื่อค่ากระแสไฟฟ้าคือ 100 mA หรือสูงกว่า ที่การทดสอบอัตโนมัติสำหรับประเภท EV จะมีการทดสอบ DC 6 mA เพิ่มเติม

รูปคลื่นกระแสไฟฟ้าของ KEW 6516/6516BT •ประเภท AC: กระแสไฟฟ้าทดสอบจะเป็นคลื่นไซน์

•ประเภท A และ F: กระแสไฟฟ้าทดสอบจะเป็นคลื่นไซน์แบบครึ่ง

•ประเภท B และ EV กระแสไฟฟ้าตรง

(3) Uc (RCD)

ช่วงแรงดันไฟฟ้าขาเข้าของระบบหลัก	100 - 260 V
ช่วง	100V
ช่วงการแสดงผล	0.0 - 104.9 V
ช่วงการวัด	0 - 100 V
(ช่วงความแม่นยำที่รับประกัน)	
ความแม่นยำ	+5% to+15%rdg±8dgt @230 V
กระแสไฟฟ้าทดสอบ	50 % หรือน้อยกว่าของ I∆n

จำนวนที่เป็นไปได้ของการทดสอบพร้อมแบตเตอรี่ใหม่

CONTINUITY	: ประมาณ 2000 ครั้งที่โหลด 1 Ω
INSULATION RESISTANCE	: ประมาณ 1500 ครั้งที่โหลด 1 MΩ (1000 V)
LOOP	: ขั้นต่ำประมาณ 3000 ครั้ง (ATT L-PE 3 W)
RCD	: ขั้นต่ำประมาณ 3500 ครั้ง (G-AC X1 30 mA)
EARTH	: ขั้นต่ำประมาณ 3000 ครั้ง ที่โหลด 10 Ω
VOLTS/PHASE ROTATION	: ประมาณ 40 ชั่วโมง

5.2 ข้อกำหนดจำเพาะทั่วไป

เงื่อนไขอ้างอิง	ข้อมูลจำเพาะจะขึ้นอยู่กับเงื่อนไขดังต่อไปนี้ ยกเว้นที่ที่ระบุไว้เป็น		
	อย่างอื่น:		
	1. อุณหภูมิโดยรอบ: 23±5°C:		
	2. ความชื้นสัมพัทธ์: 45% ถึง 75%		
	3. แรงดันไฟฟ้าที่กำหนดของระบบการจ่าย (Un):		
	230 V/ 400 V, 50 Hz/ 60 Hz		
	4. ระดับความสูง: น้อยกว่า 2000 m		
ขนาดของเครื่องมือ	235 X 136 X 114 mm		
น้ำหนักของเครื่องมือ	1350 g (รวมแบตเตอรี่)		
ประเภทแบตเตอรี่	แบตเตอรี่อัลคาไลน์ขนาด AA (LR6) x 8		
ช่วงอุณหภูมิและความชื้นในการทำงาน:	-10 ถึง +50°C, ความชื้นสัมพัทธ์ 80% หรือน้อยกว่า		
	ไม่มีการควบแน่น		
ช่วงอุณหภูมิและ	-20 ถึง +60°C, ความชื้นสัมพัทธ์ 75% หรือน้อยกว่า		
ความชื้นในการจัดเก็บ	ไม่มีการควบแน่น		
การแสดงผล	LCD ดอทเมตริกสี 320(W) X 240(H) พิกเซล		
การป้องกันโอเวอร์โหลด	วงจรทดสอบความต่อเนื่องได้รับการป้องกันโดยฟิวส์เซรามิกแบบ		
	ทำงานเร็ว 0.5 A/ 600 V (HRC) ที่ติดตั้งอยู่ในช่องใส่แบตเตอรี่		
	โดยมีฟิวส์สำรองเก็บไว้ด้วย		
	วงจรทดสอบความต้านทานฉนวนได้รับการป้องกันโดยตัวต้านทาน		
	1000 V AC เป็นเวลา 10 วินาที		

5.3 มาตรฐานที่เกี่ยวข้อง:

มาตรฐานการทำงานของเครื่องมือ	IEC61557-1,2,3,4,5,6,7,10
มาตรฐานความปลอดภัย	IEC 61010-1, -2-030, -2-034 CATIII (600 V) CATIV (300 V) - เครื่องมือ IEC 61010-031 MODEL 7218ACATII 250 V MODEL 7246CATIII 600 V/ CATIV 300 V MODEL 7228ACATIII 600 V/ CATIV 300 V (มีฝาปิด) CAT III 600 V/ CATIV 300 V (มีฝาปิด) CAT II 1000 V (ไม่มีฝาปิด) CAT II 1000 V (มี 8017A) (ใส่ฝาปิดป้องกันที่ให้มาเพื่อใช้สายทดสอบนี้ในสภาพแวดล้อม CAT III หรือสูงกว่า)
	และเซรวมกับเครื่องมอ อาจเซทมวดหมูการวดและระดบ แรงดันไฟฟ้าของรายการที่มีพิกัดต่ำกว่า
ระดับการปกป้อง	IEC 60529 IP40
EMC	EN 61326-2-2
มาตรฐานสิ่งแวดล้อม	เป็นไปตามข้อกำหนด RoHS ของสหภาพยุโรป

้คู่มือและผลิตภัณฑ์นี้ใช้สัญลักษณ์ต่อไปนี้ที่นำมาใช้จากมาตรฐานความปลอดภัยระดับสากล

U	
CAT II	หมวดหมู่การวัด "CAT II" ใช้กับ: วงจรไฟฟ้าของอุปกรณ์ที่เชื่อมต่อกับช่องเสียบ AC โดยใช้สายไฟ
CAT III	หมวดหมู่การวัด "CAT III" ใช้กับ: วงจรไฟฟ้าหลักของอุปกรณ์ที่เชื่อมต่อโดยตรงกับแผงการกระจาย และตัวป้อนจากแผงการกระจายไปยังช่องเสียบ
CAT IV	ี หมวดหมู่การวัด "CAT IV" ใช้กับ: วงจรจากสายจ่ายระบบประธานอากาศไปยังตัวนำประธานเข้าอาคารระบบสายใต้ดิน และไปยังพาวเวอร์มิเตอร์และอุปกรณ์ป้องกันกระแสไฟฟ้าเกินหลัก (แผงการกระจาย)
	เครื่องมือได้รับการป้องกันอย่างทั่วถึงโดยฉนวนสองชั้นหรือฉนวนเสริม
Â	ข้อควรระวัง (ดูเอกสารประกอบที่แนบมา)
\wedge	ข้อควรระวัง ความเสี่ยงจากไฟซ็อต
(A>6)(V)	การป้องกันต่อการเชื่อมต่อผิดพลาดสูงสุดถึง 600 V
4	กราวด์สายดิน
X	เป็นไปตามข้อกำหนดด้านการทำเครื่องหมายของกฎระเบียบ WEEE (2002/ 96/ EC) (มีผลใช้ในแต่ละประเทศของกลุ่มสหภาพยุโรป)

เพื่อให้มั่นใจว่าเครื่องมือวัดจะทำงานอย่างปลอดภัย IEC 61010 จึงได้กำหนดมาตรฐานความปลอดภัย สำหรับสภาพแวดล้อมทางไฟฟ้าที่หลากหลาย ซึ่งได้รับการจัดหมวดหมู่เป็น O ไปถึง CAT IV และเรียกว่า หมวดหมู่การวัด หมวดหมู่ที่มีตัวเลขสูงกว่าจะสัมพันธ์กับสภาพแวดล้อมทางไฟฟ้าที่มีพลังงานแบบ ชั่วคราวมากกว่า ดังนั้นเครื่องมือวัดที่ออกแบบมาสำหรับสภาพแวดล้อม CAT III จะสามารถทนต่อ พลังงานแบบชั่วคราวได้มากกว่าเครื่องมือที่ออกแบบมาสำหรับ CAT II

- : วงจรการวัดที่ไม่มีหมวดหมู่การวัด 0
- CAT II : วงจรไฟฟ้าของอุปกรณ์ที่เชื้อมต่อกับช่องเสียบ AC โดยใช้สายไฟ CAT III : วงจรไฟฟ้าหลักของอุปกรณ์ที่เชื่อมต่อโดยตรงกับแผงการกระจาย และตัวป้อนจากแผงการกระจายไปยังช่องเสียบ
- CAT IV : วงจรจากสายจ่ายระบบประธานอากาศไปยังตัวนำประธานเข้าอาคารระบบสายใต้ดิน และไปยังพาวเวอร์มิเตอร์และอุปกรณ์ป้องกันกระแสไฟฟ้าเกินหลัก (แผงการกระจาย)

5.4 ความไม่แน่นอนในการทำงาน

ความต่อเนื่อง (EN61557-4)

ช่วงการทำงานเป็นไปตามมาตรฐาน EN61557-4	เปอร์เซ็นต์สูงสุดของความไม่แน่นอนในการ
ความไม่แน่นอนในการทำงาน	ทำงาน
0.20	±30%
	บ

้ปัจจัยที่มีอิทธิพลต่อการเปลี่ยนแปลงที่ใช้ในการคำนวณความไม่แน่นอนในการทำงานมีดังนี้ อุณหภูมิ: 0°C และ 35°C ์ แรงดันไฟฟ้าจ่าย: 8 V ถึง 13.8 V

ความต้านทานของฉนวน (EN61557-2)

โวลต์	ช่วงการทำงานเป็นไปตามมาตรฐาน EN61557-2 ความไม่แน่นอน ในการทำงาน	เปอร์เซ็นต์สูงสุดของความไม่แน่นอนในการ ทำงาน
100 V	0.100 ถึง 200.0 MΩ	
250 V	0.250 ถึง 200.0 MΩ	120%
500 V	0.50 ถึง 1000 MΩ	±30%
1000 V	1.00 ถึง 2000 MΩ	

้ปัจจัยที่มีอิทธิพลต่อการเปลี่ยนแปลงที่ใช้ในการคำนวณความไม่แน่นอนในการทำงานมีดังนี้

อุณหภูมิ: 0°C และ 35°C แรงดันไฟฟ้าจ่าย: 8 V ถึง 13 8 V

อิมพีแดนซ์ของลูป (EN61557-3)

	ฟังก์ชัน	ช่วงการทำงานเป็นไปตาม มาตรฐาน EN61557-3 ความไม่ แน่นอนในการทำงาน	เปอร์เซ็นต์สูงสุดของความไม่ แน่นอนในการทำงาน		
	L-PE 0.01Ω Res	0.40			
HIGH	L-PE 0.001Ω Res	PE 0.001Ω Res			
	L-N/L-L	0.40 ถึง 20.00 Ω	±30%		
ATT	2 สาย	1.00			
	3 สาย	0.40			

ปัจจัยที่มีอิทธิพลต่อการเปลี่ยนแปลงที่ใช้ในการคำนวณความไม่แน่นอนในการทำงานมีดังนี้ อุณหภูมิ: 0°C และ 35°C มุมเฟส: ที่มุมเฟส 0° ถึง 30° ความถี่ของระบบ: 49.5 Hz ถึง 50.5 Hz แรงดันไฟฟ้าระบบ: 230 V+10%-15% แรงดันไฟฟ้าจ่าย: 8 V ถึง 13.8 V ฮาร์โมนิกส์: 5% ของฮาร์โมนิกลำดับ 3 ที่มุมเฟส 0° 6% ของฮาร์โมนิกลำดับ 5 ที่มุมเฟส 180° 5% ของฮาร์โมนิกลำดับ 7 ที่มุมเฟส 0° ปริมาณ DC: 0.5% ของแรงดันไฟฟ้าที่กำหนด

RCD (EN61557-6)

ฟังก์ชัน	ความไม่แน่นอนไนการท้างานของ กระแสไฟฟ้าตัดวงจร		
X1/2	-10% ถึง 0%		
X1, X5	0% ถึง +10%		
การเพิ่มระดับ	-10% ถึง +10%		

้ปัจจัยที่มีอิทธิพลต่อการเปลี่ยนแปลงที่ใช้ในการคำนวณความไม่แน่นอนในการทำงานมีดังนี้

• อุณหภูมิ: 0°C และ 35°C

ความต้านทานของอิเล็กโทรดดิน (ต้องไม่เกินด้านล่าง)

l∆n	ประเภท AC	ประเภท A/F ประเภท B		ประเภท EV	
6 mA	-	-			
10 mA	400 Ω	200 Ω	40 Ω	-	
30 mA	100 Ω	40 Ω	10 Ω	-	
100 mA	40 Ω	20 Ω	10 Ω	-	
300 mA	40 Ω	20 Ω	2 Ω	-	
500 mA	40 Ω	20 Ω	-	-	
1000 mA	20 Ω	-	-	-	

แรงดันไฟฟ้าระบบ: 230 V+10%-15%

•แรงดันไฟฟ้าจ่าย: 8 V ถึง 13.8 V

ความต้านทานดิน (EN61557-5)

ช่วงการทำงานเป็นไปตามมาตรฐาน EN61557-5	เปอร์เซ็นต์สูงสุดของความไม่แน่นอนในการ
ความไม่แน่นอนในการทำงาน	ทำงาน
5.00	±30% "

ปัจจัยที่มีอิทธิพลต่อการเปลี่ยนแปลงที่ใช้ในการคำนวณความไม่แน่นอนในการทำงานมีดังนี้

•อุณหภูมิ: 0°C และ 35°C

∙แรงดันไฟฟ้าสัญญาณรบกวนสำหรับซีรีส์ : 16·2/3 Hz, 50 Hz, 60 Hz, DC:10 V

400 Hz: 3 V

•ความต้านทานของโพรบและความต้านทานอิเล็กโทรดดินเสริม: 100 x RA, 50 kΩ หรือน้อยกว่า

∙แรงดันไฟฟ้าจ่าย: 8 V ถึง 13.8 V

5.5 สัญลักษณ์และเครื่องหมายที่แสดงบน LCD

	ตัวบ่งชี้ระดับแบตเตอรี่
U	จอภาพอุณหภูมิสำหรับความต้านทานภายในมีอยู่ในในฟังก์ชัน Loop, RCD การวัดเพิ่มเติมถูกระงับไว้จนกว่าสัญลักษณ์ " 🜌 " จะ หายไป
Measuring	อยู่ระหว่างการวัด
ALive Circuit	คำเตือนเกี่ยวกับวงจรที่มีกระแสไฟฟ้า (ฟังก์ชันความต่อเนื่อง / ฉนวน / ดิน)
PE Hi V	ข้อควรระวัง: การมีอยู่ของแรงดันไฟฟ้า 100V หรือมากกว่าที่ขั้ว PE จะปรากฏเมื่อแตะ Touch Pad
L-N >10Ω	การแจ้งเตือน: การมีอยู่ของความต้านทาน 10 Ω หรือมากกว่าระหว่างสายจ่ายไฟ - สายนิวตรอลที่การวัด ATT
Noise Noise	ข้อควรระวัง: การมีอยู่ของสัญญาณรบกวนในวงจรภายใต้การทดสอบ ระหว่างการวัด ATT
N - PE Hi V	ข้อควรระวัง: การมีอยู่ของแรงดันไฟฟ้าสูงระหว่างสายนิวตรอล - สายดินในระหว่างการวัด LOOP ATT
Uc > UL	ข้อควรระวัง: Uc ที่การทดสอบ RCD เกินค่า UL ที่ตั้งไว้ล่วงหน้า (25 หรือ 50V)
no	ข้อความแสดงข้อผิดพลาด: เมื่อใช้ฟังก์ชัน RCD RCD จะถูกตัดวงจรก่อน ทำการวัดเวลาการตัดวงจร RCD ค่า I∆n ที่เลือกอาจไม่ถูกต้อง เมื่ออยู่ในฟังก์ชัน LOOP, PSC/PFC การจ่ายไฟอาจถูกขัดจังหวะ
L-PE● L-N● ∰O	ตรวจสอบการเดินสายไฟสำหรับฟังก์ชัน LOOP, RCD
✓ × !	ผลลัพธ์ที่ตัดสินสำหรับการทดสอบแต่ละครั้ง
RH Hi, RS Hi	ปรากฏขึ้นเมื่อความต้านทานของโพรบของขั้ว H (RH) หรือของขั้ว S (RS) ที่การวัดดินเกินช่วงที่วัดได้
No 3-phase system	ปรากฏขึ้นเพื่อบ่งชี้การเชื่อมต่อที่ไม่ถูกต้องเมื่อตรวจสอบลำดับเฟส
N-PE Hi Ω	สำหรับ RCD ประเภท B และ EV จะปรากฏขึ้นเพื่อบ่งชี้ว่ามีความ ต้านทานสูงเกินไประหว่าง N-PE ที่จะใช้ทดสอบกระแสไฟฟ้า

6. โหมดการตั้งค่า

เข้าสู่โหมด SETUP เพื่อทำการตั้งค่าเครื่องมือ การตั้งค่าต่อไปนี้สามารถเปลี่ยนแปลงได้

- (1) LANGUAGE การเลือกภาษา
- (2) TIMEการปรับนาฬิกา
- (3) LCD Contrast การปรับความเปรียบต่างของ LCD
- (4) LCD Backlight...... การปรับความสว่างของไฟแบ็คไลท์ LCD
- (5) UL value..... การเลือกค่า UL สำหรับฟังก์ชัน RCD
- (6) Touch Pad.....เปิด/ปิดใช้งานฟังก์ชัน Touch Pad

วิธีการตั้งค่า:

- (1) กดปุ่ม F4 "SETUP" ขณะที่หน้าจอเริ่มต้นแสดงขึ้น (ประมาณ 2 วินาที) หลังจากเปิดเครื่องมือ (2) หน้าจอ SETUP ปรากฏขึ้น (ดูรูปที่ 6-2)
 - ์ หน้าจอนี้ยังสามารถอ้างอิงได้ในเมนู HELP: กด F4 ขณะที่จอ LCD กำลังแสดงแผนผังการ กำหนดค่าการเดินสายไฟ

(3) กดสวิตซ์ ▲(F1) หรือ ▼(F2) สำหรับการเลือกรายการและยืนยันการเลือกด้วยสวิตช์ ENTER (4) กดสวิตซ์ ▲(F1) หรือ ▼(F2) และเปลี่ยนแปลงการตั้งค่า การตั้งค่าที่เปลี่ยนแปลงได้มีดังนี้

รายการ	การตั้งค่า				
LANGUAGE	อังกฤษ ฝรั่งเศส โปแลนด์ อิตาลี สเปน ตุรกี ดัตช์ เชก				
TIME	ปรับวัน เดือน ปี นาที และชั่วโมง				
LCD Contrast	ขึ้นหรือลง				
LCD Backlight	ขึ้นหรือลง				
UL value	25 V หรือ 50 V				
Touch Pad	ON หรือ OFF				

- (5) กด ENTER เมื่อการตั้งค่าเสร็จสิ้น จากนั้นหน้าจอจะกลับสู่หน้าจอ SETUP MENU ตามรูปที่ 6-2 กด ESC เพื่อยกเลิกการเปลี่ยนแปลง
- (6) การกด ESC บนหน้าจอ SETUP MENU (รูปที่ 6-2) จะนำเครื่องมือเข้าสู่โหมดสแตนด์บาย

หมายเหตุ: ภาษาที่สามารถเลือกได้อาจไม่เหมือนกับภาษาที่แสดงด้านบน ทั้งนี้ขึ้นอยู่กับประเทศและภูมิภาค

7. เริ่มต้นใช้งาน

7.1 การติดปลายโลหะ/อะแดปเตอร์สำหรับสายทุดสอบ

ปลายโลหะและอะแดปเตอร์ต่อไปนี้ผู้ใช้สามารถเปลี่ยนได้ ขึ้นอยู่กับวัตถุประสงค์ในการวัด

- (1) สำหรับ MODEL 7281
 - มีปลายโลหะให้เลือกดังต่อไปนี้
 - 1. ปลายโลหะมาตรฐาน: ติดตั้งพร้อมการจัดส่งและมีฝาปิดฉนวนุแบบถอดได้
 - 2. MODEL 8017A: แบบยาวและมีประโยชน์ในการเข้าถึงจุดวัดที่ห่างไกล

(วิธีการเปลี่ยนชิ้นส่วน)

หมุนปลายของ MODEL 7281 ทวนเข็มนาฬิกาและถอดปลายโลหะออก ใส่ปลายโลหะที่คุณต้องการใช้ลงในรูหกเหลี่ยม แล้วหมุนส่วนปลายของโพรบตามเข็มนาฬิกาเพื่อขันให้แน่น

่ ^_____ิอันตราย เพื่อหลีกเลี่ยไฟฟ้าซ็อต ให้ถอดสายทดสอบออกจากเครื่องมือก่อนเปลี่ยนปลายโลหะหรืออะแดป เตอร์

7.2 การตรวจสอบแรงดันไฟฟ้าแบตเตอรี่

- (1) โปรดดูที่ "20. การเปลี่ยุนแบตเตอรี่และฟิวส์" ในคู่มือนี้ และใส่แบตเตอรี่ในเครื่องมือ
- (2) กดสวิตช์ไฟเพื่อเปิดเครื่องมือ
- . (3) ตรวจสอบตัวบ่งชี้สถานะของแบตเตอรี่ที่แสดงที่มุมบนขวาของ LCD
 - "🎟 ": ปกติ แรงดันไฟฟ้าแบตฺเตอรึ่เพียงพอ
 - "อาร์า แรงดันไฟฟ้าแบตเตอรี่ต่ำ: สำหรับการวัดแบบต่อเนื่อง โปรดดูที่ "20. การเปลี่ยนแบตเตอรี่และฟิวส์" และเปลี่ยนแบตเตอรี่ด้วยแบตเตอรี่อันใหม่
 - ": แรงดันไฟฟ้าแบตเตอรี่ต่ำกว่าขีดจำกัดล่างของแรงดันไฟฟ้าขณะใช้งาน ในสภาวะดังกล่าว เราไม่รับประกันความแม่นยำของผลลัพธ์ที่วัดได้ เปลี่ยนแบตเตอรี่ด้วยแบตเตอรี่อันใหม่ทันที

 ตัวบ่งชี้สถานะแบตเตอรี่อาจเปลี่ยนจาก "■■" เป็น "□=" ในระหว่างการวัดขึ้นอยู่กับวัตถุที่วัดได้ เช่น ความต้านทานของวัตถุต่ำ

7.3 การปรับนาฬิกา

KEW 6516/6516BT มีฟังก์ชันนาฬิกา เวลาจะแสดง ขึ้นที่มุมขวาบนของ LCD รูปแบบการแสดงเวลา: วัน/ เดือน/ ปี /ชั่วโมง: ต่ำสุด เข้าสู่โหมด SETUP เพื่อปรับนาฬิกา กด ENTER เมื่อการปรับนาฬิกาเสร็จลิ้น ดู "6. โหมดการตั้งค่า" สำหรับรายละเอียดเพิ่มเติมของโหมด "SETUP"

(1) บนหน้าจอการปรับนาฬิกา (รูปที่ 7-4) ให้เลือกพารามิเตอร์ (วัน/ เดือน/ ปี/ ชั่วโมง/ นาที) เพื่อปรับค่าด้วยสวิตช์ ◄(F3) หรือ ►(F4)
(2) ใช้สวิตซ์ ▲(F1) หรือ ▼(F2) เพื่อเปลี่ยนค่าของพารามิเตอร์ที่เลือก และกด ENTER เพื่อยืนยัน (การกดสวิตช์ ESC ระหว่างการปรับค่า สามารถย้อนกลับไปยังขั้นตอนก่อนหน้าได้)

รูปที่ 7-4 การปรับนาฬิกา

หมายูเหตุ:

การตั้งค่าในาฬิกาจะถูกล้าง หากไม่มีการใส่แบตเตอรี่ในเครื่องมือเป็นเวลา 10 นาที หรือนานกว่านั้น เมื่อจำเป็นต้องเปลี่ยนแบตเตอรี่ ต้องระวังไม่ให้เกินระยะเวลาดังกล่าว หากการตั้งค่านาฬิกาถูก ล้างและคืนค่าเป็นค่าเริ่มต้น โปรดทำการตั้งค่าอีกครั้ง

7.4 ฟังก์ชันวิธีใช้

ด้วยฟังก์ชันนี้ จะสามารถตรวจสอบการเชื่อมต่อที่ถูกต้องสำหรับการทดสอบแต่ละครั้งบน LCD ได้

การตรวจส_อบไดอะแกรมการเชื่อมต่อ:

- (1) ทำการตั้งค่าพารามิเตอร์การวัดในแต่ละฟังก์ชัน กดสวิตช์ HELP
 - (ENTER) ค้างไว้ 1 วินาที
- (2) จ[้]ากนั้น L^CD จะแสดงไดอะแกรมการเชื่อมต่อ

รูปที่ 7-5 ตัวอย่างของไดอะแกรมการเชื่อมต่อ

- (3) เมื่อมีการเชื่อมต่อหลายรายการ ให้กดสวิตช์ F1 เพื่อสลับไดอะแกรม (4) กด ESC เพื่อปิดหน้าจอไดอะแกรมการเชื่อมต่อที่แสดงอยู่ในปัจจุบัน
- หน้าจอ SETUP สำหรับทำการตั้งค่าแต่ละรายการจะปรากฏขึ้นโดยการกดสวิตช์ F4 (SETUP) ขณะที่ LCD กำลังแสดงไดอะแกรมการเชื่อมต่อ

8. การทดสอบความต่อเนื่อง (ความต้านทาน)

🕂 อันตราย

้อย่าใช้แรงดันไฟฟ้ากับฟังก์ชันความต่อเนื่อง ตรวจสอบว่าวงจรหรืออุปกรณ์ที่ทดสอบถูกตัดการ จ่ายไฟอย่างแน่นอนแล้วก่อนเริ่มการวัดเสมอ

8.1 ขั้นตอนการทดสอบ

วัตถุประสงค์ของการทดสอบความต่อเนื่องคือการวัดเฉพาะความต้านทานของชิ้นส่วนของระบบการ เดินสายไฟภายใต้การทดสอบเท่านั้น การวัดนี้ไม่ควรรวมความต้านทานของสายทดสอบใดๆ ที่ใช้ จะต้องหักลบความต้านทานของสายทดสอบออกจากการวัดความต่อเนื่องใดๆ KEW 6516/6516BT มีคุณสมบัติ null ที่ต่อเนื่องซึ่งช่วยให้มีการชดเชยอัตโนมัติสำหรับความต้านทานสายทดสอบใดๆ

คุณควรใช้เฉพาะสายทดสอบที่ให้มาพร้อมกับเครื่องมือเท่านั้น

จอแสดงผล LCD และสวิตช์เลือกฟังก์ชัน

10/12/2019 CONTINUITY เปิด / ปิดฟังก์ชัน NULL F1 เปิด/ปิดออด 2Ω F2 ด่าที่วัดได้ 0 การตั้งค่าโหมด PAT F3 (OFF, 0.1Ω, 0.3Ω,1Ω) การตั้งค่ากระแสไฟฟ้าทดสอบ F4 200mA หรือ 15mA F2 F3 F4 รูปที่ 8-1

ดำเนินการดังต่อไปนี้:

(1) เลือกการทดสอบความต่อเนื่องโดยการปรับสวิตช์แบบหมุน

(2) เชื่อมต่อสายทดสอบเข้ากับขั้ว L และ PE บน KEW 6516/6516BT ตามลำดับตามที่แสดงในรูปที่ 8-2

(3) เชื่อมต่อปลายของสายทดสอบเข้าด้วยกันให้แน่น (ดูรูปที่ 8-3) และกดปุ่มและล็อกสวิตซ์ทดสอบ ค่าความต้านทานของสายตัวนำจะแสดงขึ้น สัญลักษณ์ " จะแสดงทางด้านซ้ายของการอ่าน ค่าในระหว่างการวัด

รูปที่ 8-3

- (4) กดสวิตช์ F1(NULL) ซึ่งจะทำให้ความต้านทานของตัวนำเป็นโมฆะ และการอ่านค่าที่ระบุควร เป็นศนย์
- (5) ปล่อยสวิตซ์ทดสอบ กดสวิตฺช์ทดสอบและตรวจสอบให้แน่ใจว่าจอแสดงผลอ่านค่าเป็นศูนย์ ้ก่อนดำเนินการต่อ ในขณะที่ใช้ฟังก์ชันโมฆะความต่อเนื่อง "NULL ON" จะแสดงบนจอ LCD ดังแสดงในรูปที่ 8-3

 - ค่า Null จะถูกจัดเก็บแม้ว่าเครื่องมือจะปิดอยู่ก็ตาม ค่า Null ที่บันทึกไว้สามารถยกเลิกได้โดยถอดสายทดสอบแล้วกดสวิตช์ F1(NULL) โดยที่กดหรือ ล็อกสวิตช์ทดสอบไว้
 - NULL OFF จะแสดงบน LCD เมื่อค่า Null ที่บันทึกไว้ถูกล้าง

🕂 ข้อควรระวัง

้ก่อนทำการวัดใดๆ ให้ตรวจสอบว่าสายวัดมีค่าเป็นศูนย์เสมอ

(6) ก่อนอื่น ตรวจสอบให้แน่ใจว่า**วงจรไม่มีกระแสไฟฟ้าไหลผ่าน**

, และเชื่อมต่อสายทดสอบเข้ากับวงจรภายใต้การทดสอบเพื่อวัดความต้านทาน (ดูรูปที่ 8-4 สำหรับ การจัดเรียงการเชื่อมต่อทั่วไป)โปรดทราบว่าคำเตือน "มีกระแสไฟฟ้าไหลผ่าน" จะแสดงบน LCD หากวงจรมีกระแสไฟฟ้าไหลผ่าน แต่ควรดำเนินการตรวจสอบว่าวงจรมีกระแสไฟฟ้าไหลผ่านหรือไม่ ก่อนเสมอ

รูปที่ 8-4 ตัวอย่างการทดสอบความต่อเนื่องของการเชื่อมโยงที่มีศักย์ไฟฟ้าหลักเท่ากัน

(7) กดสวิตช์ทดสอบและตรวจสอบความต้านทานที่แสดงบนจอแสดงผล ความต้านทานของสายทด สอบถูกลบออกจากค่าที่อ่านแล้วหากมีการใช้ฟังก์ชันโมฆะความต่อเนื่อง

หมายเหตุ: หากการอ่านค่ามากกว่า 2099Ω จะยังคงแสดงสัญลักษณ์เกินช่วง ">" อยู่

การปกป้องวงจร

เครื่องมือมีฟังก์ชันการป้องกันวงจร: แม้ว่าจะมีการสัมผัสวงจรที่มีกระแสไฟฟ้าไหลผ่านในระหว่าง การวัดค่าความต้านทานต่ำโดยไม่ได้ตั้งใจ เครื่องมือก็จะไม่เกิดความเสียหาย นั่นคือ เครื่องมือได้รับ การป้องกันและไม่ได้รับความเสียหายหากขั้วการวัดแบบเปิดเชื่อมต่อกับสายไฟที่มีกระแสไฟฟ้าไหลผ่าน

8.2 ฟังก์ชันอุอด 2Ω (🕬)

8.3 การสลับกระแสไฟฟ้าทดสอบ

KEW 6516/6516BT สามารถทำการทดสอบความต่อเนื่องที่ 200 mA และ 15 mA ได้ด้วย กดสวิตช์ F4 เพื่อสลับกระแสระหว่าง 200 mA และ 15 mA

8.4 ฟังก์ชัน PAT

ฟังก์ชัน PAT มีให้เพื่อทำการทดสอบความต่อเนื่องสำหรับเครื่องใช้ไฟฟ้าแบบพกพา (1) กด F3 เพื่อเลือกค่าเกณฑ์สำหรับการทดสอบ PAT (ดูตารางด้านล่าง)

รายการ	เกณฑ์การตัดสิน
PAT OFF	-
PAT 0.1Ω	"√": 0.1 Ω หรือน้อยกว่า
	"X": มากกว่า0.1 Ω
PAT 0.3Ω	"√": 0.3 Ω หรือน้อยกว่า
	"X": มากกว่า0.3 Ω
PAT 1Ω	"√":1Ω หรือน้อยกว่า
	"X": มากกว่า 1 Ω

(2) ทำการเชื่อมต่อตามรูปที่ 8-6 ที่แสดงการตรวจสอบความต่อเนื่อง ในการทดสอบ PAT "√" หรือ "X" จะแสดงถัดจากค่าที่อ่านเพื่อแสดง PASS/ FAIL

9. การทดสอบฉนวน

เครื่องมือนี้ใช้วัดความต้านทานฉนวนของเครื่องใช้ไฟฟ้าหรือวงจรเพื่อตรวจสอบประสิทธิภาพของ ฉนวน ตรวจสอบพิกัดแรงดันไฟฟ้าของวัตถุที่จะทดสอบก่อนทำการวัด และเลือกแรงดันไฟฟ้าที่ใช้

- ค่าความต้านทานของฉูนวนที่แสดงอาจไม่เสถียร ทั้งนี้ขึ้นอยู่กับวัตถุที่จะวัด
- เครื่องมืออาจส่งเสียงบี้ปในระหว่างการวัดความต้านทานของฉนวน อย่างไรก็ตาม นี่ไม่ใช่ ความผิดปกติ
- เวลาในการวัดอาจนานขึ้นเมื่อทำการูวัดโหลดความจุไฟฟ้า
- ในการวัดความต้านทานของฉนวน ขั้วสายดินจะส่งสัญญาณแรงดันไฟฟ้าบวกและแรงดันไฟฟ้า ลุบที่ขั้วต่อสาย
- เชื่อมต่อสายดินเข้ากับขั้วสายดิน (กราวด์) ที่ทำการวัด ขอแนะนำให้เชื่อมต่อด้านบวกเข้ากับด้าน ดินเมื่อวัดความต้านทานของฉนวนกับสายดินหรือเมื่อส่วนหนึ่งของวัตถุที่ทดสอบถูกต่อลงดิน การเชื่อมต่อดังกล่าวเป็นที่ทราบกันดีว่าเหมาะสมกว่าสำหรับการทดสอบฉนวน เนื่องจากค่า ความต้านทานของฉนวนที่วัดด้วยด้านบวกที่เชื่อมต่อกับดินมักจะน้อยกว่าค่าที่ได้ผ่านการเชื่อม ต่อแบบกลับด้าน

🕂 อันตราย

- โปรดระวังเป็นพิเศษ อย่าสัมผัสปลายของหัววัดทดสอบหรือวงจรภายใต้การทดสอบ เพื่อ หลีกเลี้ยงไฟฟ้าซ็อตระหว่างการวัดฉนวน เนื่องจากมีแรงดันไฟฟ้าสูงอยู่ที่ปลายของหัววัด ทดสอบอย่างต่อเนื่อง
- เซ็ดหัววัดทดสอบด้วยผ้านุ่ม หากเปียก และใช้งานหลังจากแห้งแล้ว
- ต้องปิดฝาครอบช่องใส่แบตเตอรี่ก่อนใช้งานเครื่องมือ

🕂 ข้อควรระวัง

ให้ถอดสายไฟออกจากอุปกรณ์ภายใต้การทดสอบก่อนเริ่มการวัดฉนวนเสมอ อย่าพยายาม ทำการวัดบนวงจรที่มีกระแสไฟฟ้าไหลผ่าน มิฉะนั้นมันอาจทำให้เครื่องมือเสียหายได้

91วิธีการวัด

ในฟังก์ชัน INSULATION จะสามารถทดสอบแรงดันไฟฟ้าพังทลายของ Surge protect device (SPD, วาริสเตอร์) ได้ นอกเหนือจากแรงดันไฟฟ้าปกติ

- (1) เลือกฟังก์ชัน INSULATION ด้วยสวิตช์แบบหมุน
- (2) กดสวิตช์ F1 และเลือกการทดสอบที่คณต้องการ: "INSULATION" หรือ SPD: "SPD (วาริสเตอร์)"
- (3) กดสวิตช์ F2 และเลือกช่วงแรงดันไฟฟ้าที่ต้องการ (เมื่อเลือกการทดสอบ SPD ช่วงจะถูกกำหนดไว้คงที่ที่ 1000 V)
- (4) เชื่อมต่อสายทดสอบเข้ากับขั้ว L และ PE บน KEW 6516/6516BT ตามลำดับตามที่แสดงในรปที่ 9-2

พร้อมรีโมทสวิตช์ สายไฟสีเขียวของ MODEL 7246

(5) ต่อสายทดสอบเข้ากับวงจรหรือเครื่องใช้ไฟฟ้าภายใต้การทดสอบ (ดูรูปที่ 9-3, รูปที่ 9-4 และรูปที่ 9-5)

รปที่ 9-3 ตัวอย่างของการทดสอบความต้านทานของฉนวนบนระบบสี่สาย 3 เฟส

รูปที่ 9-4

รูปที่ 9-5 การเชื่อมต่อการทดสอบ SPD

- (6) หากค่ำเตือน "วงจรมีกระแสไฟฟ้าไหลผ่าน" แสดงขึ้นบนจอ LCD และ/หรือออดส่งเสียงดัง ห้ามกด สวิตช์ทดสอบ แต่ให้ปลดการเชื่อมต่ออุปกรณ์ออกจากวงจร ทำให้วงจรไม่มีการจ่ายไฟก่อนดำเนินการ ต่อ
- (7) กดสวิตช์ทดสอบ จอแสดงผลจะแสดงความต้านทานของฉนวนของวงจรหรืออุปกรณ์ที่เชื่อมต่อกับ เครื่องมือ ที่การทดสอบ SPD (วาริสเตอร์) จอ LCD จะแสดงแรงดันไฟฟ้าพังทลาย
- (8) ฟังก์ชั่นการคายประจุอัตโนมุัติ

้ฟังก์ชันนี้ช่วยให้ประจุใฟฟ้าที่กักเก็บไว้ในตัวเก็บประจุของวงจรภายใต้การทดสอบถูกปล่อยออกมาโดย อัตโนมัติหลังการวัด ตั้งสวิตช์ทดสอบหรือสวิตช์ควบคุมระยะไกลไปที่ปิดโดยที่สายวัดทดสอบเชื่อมต่อ อยู่

สา้มารถตรวจสอบการคายประจุได้ด้วยสัญลักษณ์ "∆" และเสียงออด

🕂 อันตราย

ห้ามสัมผัสวงจรภายใต้การทดสอบทันทีหลังการวั๊ด ความจุไฟฟ้าที่กัดเก็บไว้ในวงจรอาจทำให้เกิดไฟฟ้าช็อตได้ ปล่อยให้สายทดสอบเชื่อมต่อกับวงจร และ อย่าสัมผัสวงจรจนกว่าไฟกะพริบ "∆" จะดับลง

- การวัดและเวลาที่ผ่านไปจะแสดงบนจอ LCD ระหว่างการวัดความต้านทานฉนวน: สูงสุด 99 min.
 59 sec. หมายเหตุ: ตัวนับเวลาจะหยุดและค้างเมื่อถึง 99 min. 59 sec. หากเวลาที่ผ่านไปเกิน 100 นาที
- หากการอ่านค่ามา้กกว่า 2099 MΩ (209.9 MΩ ที่ 100 V/ 250 V, 1049 MΩ ที่ 500 V) การอ่านค่า เกินช่วง ">" จะปรากฏขึ้น

9.2 การวัดแบบต่อเนื่อง (การวัดความต้านทานของฉนวน)

สำหรับการวัดแบบต่อเนื่อง ให้ใช้คุณสมบัติการล็อกที่รวมอยู่ในสวิตช์ทดสอบ กดและหมุนสวิตช์ ทดสอบตามเข็มนาฬิกาเพื่อล็อกสวิตช์ในตำแหน่งทำงาน หากต้องการปลดล็อกสวิตช์ ให้หมุน ทวนเข็มนาฬิกา

/อันตราย
ระวังเป็นพิเศษ อย่าสัมผัสปลายสายวัดทดสอบเพื่อหลีกเลี่ยงการเกิดไฟฟ้าซ็อตเนื่องจากมี
ไฟฟ้าแรงสูงอย่างต่อเนื่อง

9.3 ลักษณะแรงดันไฟฟ้าของขั้วการวัด

เครื่องมือนี้จะสอดคล้องกับ IEC 61557 มาตรฐานนี้กำหนดว่ากระแสไฟที่วัดได้ตามพิกัดจะต้อง มีอย่างน้อย 1 mA และขีดจำกัดล่างของความต้านทานของฉนวนจะรักษาแรงดันไฟฟ้าด้านออก ตามพิกัดที่ขั้วการวัด (ดูตารางด้านล่าง) ค่านี้คำนวณโดยการหารแรงดันไฟฟ้าพิกัดด้วย กระแสไฟฟ้าตามพิกัด ในกรณีที่แรงดันไฟฟ้าพิกัดคือ 500 V ขีดจำกัดล่างของความต้านทาน ของฉนวนจะเป็นดังนี้

หาร 500 V ด้วย 1mA เท่ากับ 0.5 MΩ

้นั่นคือ ต้องมีความต้านทานของฉนวน 0.5 MΩ ขึ้นไปเพื่อจ่ายแรงดันไฟฟ้าให้กับเครื่องมือ

9.4 การวัด DAR/ PI, การแสดงค่า 1 นาที

DAR (Dielectric Absorption Ratio) และ PI (Polarization Index) จะถกวัดโดยอัตโนมัติในระหว่าง การวัดความต้านทานของฉนวน

เมื่อเวลาการวัดผ่านไป:

- 1 นาที: จอ I CD แสดงค่า DAR

- 10 นาที: จอ LCD แสดงค่า Pl

จอ LCD จะแสดงค่าที่วัดได้ หลังจากผ่านไป 1 นาทีนับจากจุดเริ่มต้นของการวัด ค่าที่วัดได้จะสามารถ ตรวจสอบได้เมื่อผ่านไป 1 นาทีและหลังจากสิ้นสุดการวัดแล้ว

ตารางด้านล่างแสดงสตรและช่วงการแสดงผล

ត្តូឲាទ	_DAR = ความต้านทาน (1 นาทีหลังจากเริ่มการทดสอบ) / ความต้านทาน (15 วินาทีหลังจากเริ่มการทดสอบ) PI = ความต้านทาน (10 นาทีหลังจากเริ่มการทดสอบ) / ความต้านทาน (1 นาทีหลังจากเริ่มการทดสอบ)
ช่วงการแสดงผล	0.00

* ค่า DAR และ PI ที่จะแสดุงจะเป็น "no" หากค่าความต้านทานที่ใช้ในสูตรข้างต้นคือ 0 MΩ หรือ ้อย่นอกช่วงการแสดงผล เมื่อค่า DAR และ PI เกินช่วงการแสดงผล จอ LCD จะแสดง ">9.99"

9.5 ฟังก์ชัน PAT

ฟังก์ชัน PAT มีไว้เพื่อทดสอบฉนวนสำหรับเครื่องใช้ไฟฟ้าแบบพกพา: ฟังก์ชันนี้ใช้ได้เฉพาะช่วง 250V และ 500V เท่านั้น

(1) กด F3 เพื่อเลือกค่าเกณฑ์สำหรับการทดสอบ PAT (ดตารางด้านล่าง)

รายการ	เกณฑ์การตัดสิน
PAT OFF	-
PAT CL1	"√": 1 MΩ หรือมากกว่า "X": น้อยกว่า 1 MΩ
PAT CL2	"√": 2 MΩ หรือมากกว่า "X": น้อยกว่า 2 MΩ

(2) ทำการเชื่อมต่อดังรูปที่ 9-8 และ 9-9 ที่แสดงเพื่อตรวจสอบฉนวน ในการทดสอบ PAT "√" หรือ "X" จะแสดงถัดจากค่าที่อ่านเพื่อแสดง PASS/FAIL

9.6 การทดสอบ SPD (วาริสเตอร์)

การทดสอบ SPD สามารถวัดแรงดันไฟฟ้าซึ่งทำให้อุปกรณ์ป้องกันไฟฟ้ากระชาก (วาริสเตอร์) พังทลาย ได้ เมื่อเริ่มต้นการทดสอบ แรงดันไฟฟ้าเอาท์พุต KEW 6516/6516BT จะเพิ่มขึ้นโดยอัตโนมัติ จาก O V จนกระทั่ง SPD พังทลาย และจอ LCD จะแสดงค่าแรงดันไฟฟ้า (หากตรวจพบการไหลของ กระแสไฟฟ้า 1 mA หรือสูงกว่า เครื่องมือจะตัดสินว่าเป็นจุดพังทลาย)

- กดสวิตช์ทดสอบเพื่อเริ่มการวัด กดปุ่ม F4 หรือสวิตช์ ESC ในระหว่าง การวัดเพื่อหยุดการวัด
- จอ LCD จะแสดงแรงดันไฟฟ้าพังทลาย SPD (DCV) และแรงดันไฟฟ้าทางเลือก (ACV) ที่สมมติ ไว้ด้วย

หน้าจอการวัด SPD

10. LOOP/ PSC/PFC

10.1 หลักการวัด

(1) หลักการวัดของอิมพีแดนซ์ลูปที่ผิดพลาดและ PFC

หากการติดตั้งระบบไฟฟ้าได้รับก**้**ารป้องกันด้วยอุปกรณ์ป้องกันกระแสไฟเกิน รวมถึงอุปกรณ์ตัด วงจรหรือฟิวส์ ควรวัดอิมพีแดนซ์ลูปดิน

ในกรณีที่เกิดข้อผิดพลาด อิมพีแด[้]นซ์ของวงจรความผิดปกติของสายดินจะต้องต่ำเพียงพอ (และ กระแสไฟฟ้าผิดพลาดที่คาดหมายต้องสูงเพียงพอ)

เพื่อให้แหล่งจ่ายไฟตัดการเชื่อมต่อโดยอัตโนมัติโดย[์]อุปกรณ์ป้องกันวงจรภายในช่วงเวลาที่กำหนดได้ วงจรทุกวงจรจะต้องได้รับการทดสอบเพื่อให้แน่ใจว่าค่าอินพีแดนซ์ลูปความผิดพลาดสายดินจะไม่เกินค่า ที่ระบุหรือเหมาะสมสำหรับอุปกรณ์ป้องกันกระแสไฟเกินที่ติดตั้งไว้ในวงจร The KEW 6516/6516BT ใช้กระแสจากแหล่งจ่ายไฟและวัดความแตกต่างระหว่างแรงดันไฟฟ้าของแหล่งจ่ายที่ไม่มีโหลดและมี โหลด จากความแตกต่างนี้ จึงสามารถคำนวณความต้านทานของลูปได้

ระบบ TT

้สำหรับระบบ TT อิมพีแดนซ์ของลูปความผิดพลาดของดินคือผลรวมของอิมพีแดนซ์ต่อไปนี้:

- อิมพีแดนซ์ของขดลวดทุติยภูมิของหม้อแปลงไฟฟ้า
- อิมพีแดนซ์ของความต้านทานตัวนำของเฟสจากหม้อแปลงไฟฟ้าไปยังตำแหน่งของข้อผิดพลาด
- อิมพีแดนซ์ของตัวนำป้องกันจากต่ำแหน่งที่ผิดพลาดไปยังระบบสายดิน
- ความตู้านทานของระบบสายดินท้องถิ่น (R)
- ความต้านทานของระบบสายดินของหม้อแปลงไฟฟ้า (Ro)

รูปด้านล่างแสดง (เส้นประ) อิมพีแดนซ์ลูปความผิดพลาดสำหรับระบบ TT

ตามมาตรฐานระหว่างประเทศ IEC 60364 สำหรับระบบ TT คุณลักษณะของอุปกรณ์ป้องกัน และความต้านทานของวงจรต้องเป็นไปตามข้อกำหนดต่อไปนี้:

Ra x la <u><</u> 50 V

โดยที่:

Ra คือผลรวมของความต้านทานในหน่วย Ω ของระบบสายดินท้องถิ่นและตัวนำป้องกันสำหรับ ชิ้นส่วนนำไฟฟ้าที่เปลือย

50 คือขีดจำกัดแรงดันไฟฟ้าสัมผัสสูงสุดเพื่อความปลอดภัย (อาจเป็น 25 V ในกรณีพิเศษ เช่น สถานที่ก่อสร้าง พื้นที่เกษตรกรรม ฯลฯ)

la เป็นกระแสไฟฟ้าที่ทำให้เกิดการตัดก[้]ารเชื่อมต่อโดยอัตโนมัติของอุปกรณ์ป้องกันภายในเวลาตัด การเชื่อมต่อสูงสุดที่กำหนดโดยมาตรฐาน IEC 60364-41 ซึ่งสำหรับการติดตั้งระบบไฟฟ้าที่ 230 / 400 V AC คือ:

- 200 ms สำหรับวงจรสุดท้ายสูงสุด 63 A สำหรับซ็อกเก็ต หรือสูงสุด 32 A สำหรับโหลดที่เชื่อมต่อ แบบคงที่

- 1 s สำหรับวงจรการจำหน่ายและวงจรดังกล่าวข้างต้นในช่วง 63 A และ 32 A

ความสอดคล้องตามกฎข้างบนจะถูกตรวจสอบโดย:

1) การวัดความต้านทาน^{ี้} Ra ของระ[ั]บบสายดินท้องถิ่นโดยเครื่องทดสอบลูปหรือเครื่องทดสอบสายดิน 2) การตรวจยืนยันคุณลักษณะและ/หรือประสิทธิผลของอุปกรณ์ป้องกันที่เกี่ยวข้องกับ RCD

โดยทั่วไปในระบบ TT จะมีการใช้ RCD เป็นอุปกรณ์ป้องกัน และในกรณีนี้ la เป็นกระแสไฟฟ้า ทำงานตกค้างตามอัตรา l∆n ตัวอย่างเช่น ในระบบ TT ที่มีการป้องกันโดย RCD ค่า Ra สูงสุดคือ:

กระแสไฟฟ้าทำงานตกค้างตาม อัตรา I∆n	30	100	300	500	1000	(mA)
RA (ด้วยแรงดันไฟฟ้าสัมผัส 50 V)	1667	500	167	100	50	(Ω)
RA (ด้วยแรงดันไฟฟ้าสัมผัส 25 V)	833	250	83	50	25	(Ω)

ด้านล่างนี้เป็นตัวอย่างในทางปฏิบัติของการตรวจสอบการป้องกันโดย RCD ในระบบ TT ตาม มาตรฐานระหว่างประเทศ IEC 60364

ในตัวอย่างนี้ ค่าสูงสุดที่อนุญาตคือ 1667 Ω (RCD =30 mA และขีดจำกัดแรงดันไฟฟ้าหน้าสัมผัส 50 V) เครื่องมืออ่านค่าได้เป็น 12.74 Ω ดังนั้นเงื่อนไขของ RA ≦ 50/Ia จึงเป็นไปตามมาตรฐาน อย่างไรก็ตาม เมื่อพิจารณาว่า RCD จำเป็นสำหรับการป้องกัน จึงต้องทำการทดสอบ (โปรดดูส่วนการทดสอบ RCD)

ระบบ TN

สำหรับระบบ TN อิมพีแดนซ์ของลูปความผิดพลาดของดินคือผลรวมของอิมพีแดนซ์ต่อไปนี้: • อิมพีแอนซ์ตอ พวกวอวมผินอนิพา หน้อแฟอ ไปผู้ใว

- อิมพีแดนซ์ของขดลวดทุติยภูมิข้องหม้อแปลงไฟฟ้า
 อิมพีแดนซ์ของขดลวดทุติยภูมิข้องหม้อแปลงไฟฟ้า
- อิมพีแดนซ์ของตัวนำของเฟส์จากหม้อแปลงไฟฟ้าไปยังตำแหน่งของข้อผิดพลาด
 อิมพีแดนซ์ของตัวนำของเฟส์จากหม้อแปลงไฟฟ้าไปยังตำแหน่งของข้อผิดพลาด
- อิมพีแดนซ์ของตัวนำป้องกันจากตำแหน่งที่ผิดพลาดไปยังหม้อแปลงไฟฟ้า

รูปด้านล่างแสดง (เส้นประ) อิมพีแดนซ์ลูปความผิดพลาดสำหรับระบบ TN

ตามมาตรฐานระหว่างประเทศ IEC 60364 สำหรับระบบ TN คุณลักษณะของอุปกรณ์ป้องกันและ ความต้านทานของวงจรต้องเป็นไปตามข้อกำหนดต่อไปนี้:

Zs x la <u>≤</u> Uo

โดยที่:

Zs คืออิมพีแดนซ์ลูปความผิดพลาด มีหน่วยเป็นโอห์ม

Uo คือแรงดันไฟฟ้าที่กำหนดระหว่างเฟสไปยังดิน (โดยทั่วไปคือ 230 V AC สำหรับทั้งวงจรเฟส เดียวและสามเฟส)

la เป็นกระแสไฟฟ้าที่ทำให้เกิดการตัดการเชื่อมต่อโดยอัตโนมัติของอุปกรณ์ป้องกันภายในเวลาตัดการ เชื่อมต่อสูงสุดที่กำหนดโดยมาตรฐาน IEC 60364-41 ซึ่งสำหรับการติดตั้งที่ 230/ 400 V AC คือ: - 400 ms สำหรับวงจรสุดท้ายสูงสุด 63 A สำหรับซ็อกเก็ต หรือสูงสุด 32 A

สำหรับโหลดที่เชื่อมต่อแบบคงที้

- 5 s สำหรับวงจรการจำหน่ายและวงจรดังกล่าวข้างต้นในช่วง 63 A และ 32 A

ความสอดคล้องตามกฎข้างบนจะถูกตรวจสอบโดย:

1) การวัดความต้านทานี้ลูปความผื้ดพลาด Zs โดยเครื่องทดสอบลูป

- การตรวจยืนยันคุณลัก[ั]ษณะและ/หรือประสิทธิผลของอุปกรณ์ป้องกันที่เกี่ยวข้อง จะต้องทำการ ตรวจสอบนี้:
- สำหรับอุปกรณ์ตัดวงจรและฟิวส์ โดยการตรวจสอบด้วยสายตา (เช่น การตั้งค่าเวลาลัดวงจรหรือ เวลาการตัดวงจรทันทีสำหรับอุปกรณ์ตัดวงจร พิกัดกระแสไฟ และประเภทของฟิวส์)
- สำหรับ RCD แนะนำให้ตรวจส[่]อบด้วยสายตาและทดสอบโดยใช้เครื่องทดสอบ RCD เพื่อยืนยัน ว่าเป็นไปตามเวลาในการตัดการเชื่อมต่อที่ระบุถึงข้างต้น (โปรดดูส่วนการทดสอบ RCD)

ตัวอย่างเช่น ในระบบ TN ที่มีแรงดันไฟฟ้ากำหนดที่ 230/ 400 V AC และมีการป้องกันโดยฟิวส์หรือ อุปกรณ์ตัดวงจร โดยทราบลักษณะเส้นโค้งของฟิวส์ gG หรือ MCB (Miniature Current Breakers) ตามมาตรฐาน IEC 60898-1 และ IEC 60947-2 ค่า Zs สูงสุดอาจเป็น:

อุปกรณ์ป้องกัน		ฟิวส์ gG		МСВ					
				В	С	С	D	D	K
เวลาที่ตัดการเชื่อมต่อ		0.4s	5 s	0.4 และ 5s	0.4s	5s	0.4s	5s	0.4s
	6 A	5.00 Ω	8.84 Ω	7.67 Ω	3.83 Ω	7.67 Ω	1.92 Ω	3.83 Ω	2.73 Ω
	10 A	2.87 Ω	5.00 Ω	4.60 Ω	2.30 Ω	4.60 Ω	1.15 Ω	2.30 Ω	1.64 Ω
	13 A	2.30 Ω	4.10 Ω	3.53 Ω	1.77 Ω	3.53 Ω	0.88 Ω	1.77 Ω	1.18 Ω
	16 A	2.15 Ω	3.48 Ω	2.87 Ω	1.44 Ω	2.87 Ω	0.72 Ω	1.44 Ω	1.26 Ω
	20 A	1.58 Ω	2.65 Ω	2.30 Ω	1.15 Ω	2.30 Ω	0.57 Ω	1.15 Ω	0.82 Ω
	25 A	1.27 Ω	2.11 Ω	1.84 Ω	0.92 Ω	1.84 Ω	0.46 Ω	0.92 Ω	0.61 Ω
การจัดอันดับ	32 A	0.84 Ω	1.44 Ω	1.44 Ω	0.72 Ω	1.44 Ω	0.36 Ω	0.72 Ω	0.51 Ω
	35 A	0.74 Ω	1.36 Ω						
	40 A	0.72 Ω	1.21 Ω	1.15 Ω	0.57 Ω	1.15 Ω	0.28 Ω	0.57 Ω	0.41 Ω
	50 A	0.49 Ω	0.87 Ω	0.92 Ω	0.46 Ω	0.92 Ω	0.23 Ω	0.46 Ω	0.33 Ω
	63 A	0.42 Ω	0.72 Ω	0.73 Ω	0.36 Ω	0.73 Ω	0.18 Ω	0.36 Ω	0.26 Ω
	80 A	0.27 Ω	0.51 Ω	0.58 Ω	0.29 Ω	0.58 Ω	0.15 Ω	0.29 Ω	0.20 Ω
	100 A	0.22 Ω	0.39 Ω	0.47 Ω	0.23 Ω	0.47 Ω	0.12 Ω	0.23 Ω	0.16 Ω

เครื่องทดสอบมัลติฟังก์ชันที่สมบูรณ์แบบที่สุดยังนำตารางขีดจำกัด Zs ข้างต้นมาใช้ในเฟิร์มแวร์ ดังนั้นการตรวจสอบการป้องกันกระแสเกินจะดำเนินการโดยอัตโนมัติโดยการเปรียบเทียบค่าที่วัดได้ ของอิมพีแดนซ์ลูปและขีดจำกัด Zs ของตาราง

ของอิมพีแดนซ์ลูปและขีดจำกัด Zs ของตาราง หมายเหตุ: ตารางขีดจำกัด Zs ที่ใช้ได้อาจแตกต่างกันตามประเทศ KEW 6516/6516BT จะแสดง ตารางขีดจำกัด Zs ที่เหมาะสมซึ่งสอดคล้องกับภาษาที่เลือกโดยอัตโนมัติ

ด้านล่างนี้เป็นตัวอย่างในทางปฏิบัติของการตรวจสอบการป้องกันโดย MCB ในระบบ TN ตาม มาตรฐานระหว่างประเทศ IEC 60364

ค่าสูงสุดของ Zs สำหรับตัวอย่างนี้คือ 1.44 Ω (MCB 16 A, ลักษณะเฉพาะ C) อุปกรณ์อ่านค่าได้ 1.14 Ω (หรือ 202 A ในช่วงกระแสไฟผิดพลาด) ซึ่งหมายความว่าเงื่อนไข: Zs x la ≤ Uo เป็นไปตาม มาตรฐาน

ในความเป็นจริง Zs ของ 1.14 Ω น้อยกว่า 1.44 Ω (หรือกระแสไฟความผิดพลาดของ 202A มากกว่า Ia ของ 160 A)

หรืออีกนัยหนึ่ง ในกรณีที่เกิดข้อผิดพลาดระหว่างเฟสและดิน ซ็อกเก็ตติดผนังที่ทดสอบในตัวอย่าง นี้จะได้รับการป้องกัน เนื่องจาก MCB จะตัดการทำงานภายในเวลาตัดการเชื่อมต่อที่ต้องการ

(2) หลักการวัดของอิมพีแดนซ์และ PSC

. วิธี้การวัดสำหรับอิมพีแดนซ์สายจ่ายไฟ - นิวตรอลและอิมพีแดนซ์สายจ่ายไฟ – สายจ่ายไฟเหมือนกัน ทุกประการกับการวัดอิมพีแดนลูปความผิดพลาดสายดิน ยกเว้นว่าจะทำการวัดระหว่างสายจ่ายไฟ และ นิวตรอลหรือสายจ่ายไฟกับสายจ่ายไฟ

ไฟฟ้าลัดวงจรที่คาดว่าจะเกิดขึ้นหรือกระแสไฟฟ้าผิดพลาดที่จุดใดๆ ภายในการติดตั้งระบบไฟฟ้า คือกระแสไฟฟ้าที่จะไหลในวงจรหากไม่มีการป้องกันวงจรที่ทำงาน และเกิดการลัดวงจรที่สมบูรณ์ (อิมพีแดนซ์ต่ำมาก) ค่าของกระแสไฟผิดพลาดถูกกำหนดโดยแรงดันไฟฟ้าของแหล่งจ่ายไฟและ อิมพีแดนซ์ของเส้นทางกระแสไฟผิดพลาด การวัดกระแสไฟฟ้าลัดวงจรที่อาจเกิดขึ้นสามารถใช้เพื่อ ตรวจสอบว่าอุปกรณ์ป้องกันภายในระบบจะทำงานภายในขีดจำกัดความปลอดภัยและสอดคล้องกับ การออกแบบที่ปลอดภัยของการติดตั้งหรือไม่ ความจุกระแสไฟพังทลายของอุปกรณ์ป้องกันที่ติดตั้งไว้ ควรสูงกว่ากระแสไฟฟ้าลัดวงจรที่คาดว่าจะเกิดขึ้นเสมอ

รูปที่

10.2. วิธีการวัดสำหรับกระแสไฟฟ้าสูงของ LOOP

จอแสดงผล LCD และสวิตช์เลือกฟังก์ชัน

F1	เปลี่ยนโหมดการวัด:
	L-PE หรือ L-N/L-L
F2	เลือกความละเอียด 0.01 Ω หรือ 0.001 Ω (ในกรณีของ L-PE)
F3	เลือกสายทดสอบ (0.001 ΩRes)
F4	การตั้งค่าค่าขีดจำกัด

รูปที่ 10-8 สำหรับการทดสอบ L-N และ L-L

(3) กดสวิตซ์ F1 แล้วเลือก L-N เพื่อวัดอิมพีแดนซ์ลูป L-N/L-Lหรือเลือก L-PE เพื่อวัดอิมพีแดนซ์ลูปดิน

- กดสวิตซ์ F2 แล้วเลือกความละเอียดที่ 0.01 Ω หรือ 0.001 Ω ที่การทดสอบ L-PE
- การแสดงผลจะเปลี่ยนโดยอัตโนมัติดังต่อไปนี้ขึ้นอยู่กับแรงดันไฟฟ้าที่ใช้ในขณะที่เลือก LOOP (L-N/L-L)

รูปที่ 10-9

- (4) กดสวิตซ์ F4 เพื่อเข้าสู่โหมดการตั้งค่าสำหรับค่าขีดจำกัด โปรดดู "10.4 ค่าขีดจำกัด Loop"
- (5) การเชื่อมต่อ

เชื่อมต่อ KEW 6516/6516BT เข้ากับระบบการจ่ายที่จะทดสอบพร้อมอ้างอิงที่รูปที่ 10-12, 10-13, 10-14 และ 10-15

(6) การตรวจสุอบการเดินสายไฟ

หลังการเชื่อมต่อ โปรดตรวจสอบให้แน่ใจว่าสัญลักษณ์การตรวจสอบการเดินสายไฟบนจอ LCD อยู่ในสถานะที่ระบุตามในรูปที่ 10-10 ก่อนกดสวิตช์ทดสอบ

ฟังก์ชัน	L-PE O	L-NO	$\underline{\mathbb{A}}$ \bigcirc
L-PE 0.01ΩRes	۲	พรือ	0
0.001ΩRes		0	0
			0
L-N/L-L		หรือ	
	0		0
	1ª 10 10		

รูปที่ 10-10

ถ้าสถานะของสัญลักษณ์สำหรับการตรวจสอบการเดินสายไฟแตกต่างไปจากในรูปที่ 10-10 หรือ สัญลักษณ์ 魯O ถูกระบุอยู่บนจอ LCD, อย่าดำเนินการต่อเนื่องจากมีการเดินสายไม่ถูกต้อง จะต้อง ตรวจหาสาเหตุของความผิดพลาดและแก้ไข

เมื่อเชื่อมต่อเครื่องมือกับระบบเป็นครั้งแรก เครื่องมือจะแสดงแรงดันไฟฟ้าสายดิน (โหมด L-PE) หรือ แรงดันไฟฟ้าสาย-นิวตรอล (โหมด L-N/ L-L) และอัปเดตทุกๆ 1 วินาที หากแรงดันไฟฟ้านี้ไม่ปกติหรือไม่ เป็นไปตามที่คาดไว้ อย่าดำเนินการต่อ (7) การเลือกสายทดสอบ (L-PE0.001ΩRes)

ในกรณีของ L-PE0.001 ΩRes ให้ใช้สวิต[ั]ช์ F3 เพื่อเลือกสายทดสอบที่จะใช้ เมื่อ 0.001 ΩRes ้ความต้านทานของสายทดสอบที่จะใช้จะส่งผลต่อผลลัพธ์ที่วัดได้ ดังนั้นการเลือกสายทดสอบ จึงมีประสิทธิภาพในการลดความผิดพลาดในผลลัพธ์ได้ เลือกสายทดสอบระบบหลัก MODEL 7218A หรือ MODEL 7246 (สายวัดของแผงกระจาย)

สายวัดของระบบหลักถูกเลือก

(8) การวัด

้กดสวิตช์ทดสอบ เสียงบี๊บจะดังขึ้นเมื่อทำการทดสอบ และค่าของอิมพีแดนซ์ลูปจะปรากฏขึ้น เมื่อ ตั้งค่าขีดจำกัด LOOP แล้ว จอ LCD จะแสดง ″√″ เมื่อค่าที่วัดได้น้อยกว่าค่าขี้ดจำกัดและ๊แสดง "X" ถ้าค่านั้นเกินค่าขีดจำกัด สัญลักษณ์ " ! " จะปรากฏขึ้นเมื่อผลลัพธ์ที่วัดได้เกินช่วงการวัดและ ขีดจำกัดบนของช่วงการวัดน้อยกว่าค่าอ้างอิง: หมายความว่าไม่อาจตัดสินได้

ถ้าจอแสดงผลแสดง ">" โดยปกติแล้วหมายความว่าค่าที่วัดได้เกินช่วงที่กำหนด

ฐปที่ 10-12 การเชื่อมต่อสำหรับการใช้ช่องออก

รูปที่ 10-14 การเชื่อมต่อสำหรับสายจ่ายไฟ – การวัดสายนิวตรอล

รูปที่ 10-15 การเชื่อมต่อสำหรับสายจ่ายไฟ – การวัดสายจ่ายไฟ

สวิตช์ทดสอบอาจถูกกดและหมุนตามเข็มนาฬิกาเพื่อล็อกสวิตช์สำหรับการทดสอบอัตโนมัติ ใน โหมดอัตโนมัตินี้ เมื่อใช้สายทดสอบแผงการจ่าย MODEL 7246 การทดสอบทำโดยเพียงแค่ถอด และเชื่อมต่อสายสีแดงของ MODEL 7246 โดยไม่ต้องกดสวิตช์ทดสอบ นั่นคือ "แฮนด์สฟรี"

 ผลลัพธ์ที่วัดอาจได้รับผลกระทบ ขึ้นอยู่กับมุมเฟสของระบบการจ่ายเมื่อทำการวัดใกล้กับหม้อ แปลงไฟฟ้า และผลลัพธ์อาจต่ำกว่าค่าอิมพีแดนซ์จริง ข้อผิดพลาดในผลลัพธ์ที่วัดได้มีดังนี้

ความแตกต่างของเฟสของระบบ	ข้อผิดพลาด (ประมาณ)
10°	-1.5%
20°	-6%
30°	-13%

 ถ้าสัญลักษณ์ (20) ปรากฏขึ้น หมายความว่าตัวต้านทานทดสอบร้อนเกินไป และคุณสมบัติตัด วงจรอัตโนมัติถูกเปิดใช้งาน ปล่อยให้เครื่องมือเย็นลงก่อนดำเนินการต่อ วงจรความร้อนเกินจะ ช่วยป้องกันตัวต้านทานการทดสอบจากความเสียหายเนื่องจากความร้อน

10.3. วิธีการวัดสำหรับ LOOP ATT (Anti trip technology)

จอแสดงผล LCD และสวิตช์เลือกฟังก์ชัน

F1	เปลี่ยนการทดสอบ 3 สายและ 2 สาย
F2	เปิด/ ปิดฟังก์ชันพัลส์
F3	N/A
F4	การตั้งค่าค่าขีดจำกัด

(1) กดสวิตซ์ไฟและเปิดเครื่องมือ หมุนสวิตช์แบบหมุนและปรับตั้งไปที่ตำแหน่ง LOOP ATT

(2) เชื่อมต่อสายทดสอบเข้ากับเครื่องมือ (รูปที่ 10-17 หรือ รูปที่ 10-18)

(3) กดสวิตช์ F1 และเลือกการทดสอบ L-PE 2W (2 สาย) หรือ L-PE 3W (3 สาย)

(4) สามารถเปิดหรือปิดฟังก์ชันพัลล์ได้ด้วยสวิตช์ F2 เมื่อฟังก์ชันพัลส์อยู่ที่ on (เปิดใช้งาน) กระแสไฟฟ้าสูงจะถูกจ่ายให้ในช่วงเวลาลัดวงจร - RCD จะไม่ ตัดวงจร - ก่อนเริ่มการวัด LOOP ฟังก์ชันพัลส์นี้สามารถกำจัดการเคลือบออกซิไดซ์ของวงจรภายใต้ การทดสอบและส่งผลให้ได้การวัดที่แม่นยำ

🛆 ข้อควรระวัง

ี เมื่อฟังก์ชันพัลส์ถูกเปิดใช้งาน RCD บางรุ่นอาจตัดวงจรโดยขึ้นอยู่กับความไว ในกรณีดังกล่าว ให้ ปิดการทำงานของฟังก์ชันพัลส์

- (5) กดสวิตช์ F4 เพื่อเข้าสู่โหมดการตั้งค่าสำหรับค่าขีดจำกัด โปรดดู "10.4 ค่าขีดจำกัด Loop"
- (6) การเชื่อมต่อ

เชื่อมต่อ KEW 6516/6516BT เข้ากับระบบการจ่ายที่จะทดสอบพร้อมอ้างอิงที่รูปที่ 10-20, 10-21 และ 10-22

(7) ตรวจสอบการเดินสายไฟ

หลังการเชื่อมต่อ โปรดตรวจสอบให้แน่ใจว่าสัญลักษณ์การตรวจสอบการเดินสายไฟบนจอ LCD อยู่ในสถานะที่ระบุตามในรูปที่ 10-19 ก่อนกดสวิตช์ทดสอบ

ฟังก์ชัน	L-PE O	L-NO	Δ
L-PE 3W			0
L-PE 2W		0	0

รูปที่ 10-19

ถ้าสถานะของสัญลักษณ์สำหรับการตรวจสอบการเดินสายไฟแตกต่างไปจากในรูปที่ 10-19 หรือสัญลักษณ์ ☎**○** ถูกระบุอยู่บนจอ LCD, อย่าดำเนินการต่อเนื่องจากมีการเดินสายไม่ถูกต้อง จะต้องตรวจหาสาเหตุของความผิดพลาดและแก้ไข

ี เมื่อเครื่องมือเชื่อมต่อกับระบบเป็นครั้งแรก เครื่องจะแสดงแรงดันไฟฟ้าสายจ่าย-สายดิน (โหมด L-PE) และสามารถอัปเดตได้ทุกๆ 1s หากแรงดันไฟฟ้านี้ไม่ปกติหรือไม่เป็นไปตามที่คาดไว้ อย่าดำเนินการต่อ

(8) การวัด

, การวิตช์ทดสอบ เสียงบี๊บจะดังขึ้นเมื่อทำการทดสอบ และค่าของอิมพีแดนซ์ลูปจะปรากฏขึ้น เมื่อตั้งค่า ขีดจำกัด LOOP แล้ว จอ LCD จะแสดง "√" เมื่อค่าที่วัดได้น้อยกว่าค่าขีดจำกัดและแสดง "X" ถ้าค่านั้น สูงกว่าค่าขีดจำกัด

• ถ้าจอแสดงผลแสดง ">" โดยปกติแล้วหมายความว่าค่าที่วัดได้เกินช่วงที่กำหนด

รูปที่ 10-20 การทดสอบ 3 สาย (การเชื่อมต่อสำหรับการใช้ช่องออก)

รูปที่ 10-21 การทดสอบ 3 สาย (การเชื่อมต่อสำหรับการจ่าย)

รูปที่ 10-22 การทดสอบ L-PE 2 สาย

- โหมด ATT ช่วยให้สามารถวัดได้โดยไม่ต้องตัดวงจร RCD ด้วยกระแสไฟฟ้าตกค้างตามพิกัดที่ 30 mA หรือมากกว่า
- การวัดในโหมด ATT ต้องใช้เวลานานกว่าที่จำเป็นสำหรับการวัดอื่นๆ (ประมาณ 8 วินาที) เมื่อทำ การวัดวงจรที่มีสัญญาณรบกวนทางไฟฟ้าขนาดใหญ่ ตัวบ่งชี้ "Noise" จะแสดงบนจอ LCD และ เวลาในการวัดจะนานออกไป

ตัวบ่งชี้สัญญาณรบกวนจะแสดงระดับสัญญาณรบกวนในสามระดับ ระดับของสัญญาณรบกวน จะส่งผลต่อเวลาในการวัด

รูปที่ 10-23 ตัวบ่งชี้สัญญาณรบกวน

หากสัญลักษณ์ "NOISE" แสดงอยู่บน LCD ขอแนะนำให้ปิดโหมด ATT และทำการวัด (RCD อาจตัดวงจร)

- ที่การวัด L-PE 3W เมื่อความต้านทาน LOOP ระหว่าง L-N เกิน 20 Ω จอ LCD จะแสดง "L-N>20Ω" และเครื่องมือจะไม่ทำการวัด ในกรณีนี้ ให้ตั้งค่าช่วงการทดสอบเป็น "LOOP HIGH" หรือทดสอบด้วย L-PE 2W ATT
- หากมีแรงดันไฟฟ้าสูงระหว่าง N-PE ในการทดสอบ L-PE 3W จอ LCD จะแสดง "N-PE HiV" และเครื่องมือจะไม่ทำการวัด ในกรณีนี้ ให้ตั้งค่าช่วงการทดสอบเป็น "LOOP HIGH" หรือทดสอบด้วย L-PE 2W ATT

อาจหมุนสวิตช์ทดสอบตามเข็มนาฬิกาเพื่อล็อกสวิตช์ได้ ในโหมดอัตโนมัตินี้ เมื่อใช้สายทดสอบ แผงการจ่าย MODEL 7246 การทดสอบทำโดยเพียงแค่ถอดและเชื่อมต่อสายสีแดงของ MODEL 7246 โดยไม่ต้องกดสวิตช์ทดสอบ นั่นคือ "แฮนด์สฟรี"

- ผูลลัพธ์ที่วัดอาจได้รับผลกระทบ
 - ขึ้นอยู่กับมุมเฟสของระบบการจ่ายเมื่อทำการวัดใกล้กับหม้อแปลงไฟฟ้า และผลลัพธ์อาจต่ำกว่า ค่าอิมพีแดนซ์จริง ข้อผิดพลาดในผลลัพธ์ที่วัดได้มีดังนี้

ความแตกต่างของเฟสของระบบ	ข้อผิดพลาด (ประมาณ)
10°	-1.5%
20°	-6%
30°	-13%

 ถ้าสัญลักษณ์ () ปรากฏขึ้น หมายความว่าตัวต้านทานทดสอบร้อนเกินไป และคุณสมบัติตัด วงจรอัตโนมัติถูกเปิดใช้งาน ปล่อยให้เครื่องมือเย็นลงก่อนดำเนินการต่อ วงจรความร้อน ้เกินจะช่วยป้องกันตัวต้านทานการทดสอบจากความเสียหายเนื่องจากความร้อน

10.4 ค่าขีดจำกัด Loop

เมื่อต้องการตั้งค่าขีดจ้ำกัด Loop ให้กดปุ่ม F4 ในโหมดสแตนด์บายเมื่อทำการทดสอบ LOOP ภาพต่อไปนี้แสดงหน้าจอโหมดการตั้งค่า

LOOP L	imit	1	3/11/2019 11 36
-	LOOP Limit	setting	-
	Protection type	MCB B	
	In	16A	
	Time	0.4s	
	Zs factor	1.00	
	Zs Limit	<2.87	
	(2	.87 x 1.00)	
	_		

รปที่ 10-24 หน้าจอ LOOP LIMIT setting

			ິ	
ו ע	4	~	e	
maca "00" 100 "11 do "11	0000 in m	0 ČO	7~m 9/	O O
19 12 1/119 1714 1/11/14191/1714	12 12119	ורכוס	12 191 / 11	61
		– • • • •		

(a) Protection type	ประเภทของอุปกรณ์ป้องกัน	gG FUSE, MCB(B,C,D,K),RCD,OFF
(b) ln	กระแสไฟฟ้าพิกัดของอุปกรณ์	In: 6 - 100 A
	ป้องกัน	I∆n: 30 mA-1000 mA
(c) Time or Uc	เวลาการตัดวงจรของอุปกรณ์ ป้องกัน	สำหรับการตั้งค่าขีดจำกัด RCD, Uc
(d) Zs Factor	ระยะขอบของค่าเกณฑ์	ค่าขีดจำกัดถูกกำหนดโดยสูตรต่อไปนี้ ขีดจำกัด = ค่าที่ระบุ x ปัจจัย

ขั้นตอนการตั้งค่าขีดจำกัดแสดงไว้ด้านล่าง (กดสวิตช์ ESC เพื่อกลับไปยังหน้าจอก่อนหน้า)

- (1) กด F1(▲) หรือ F2(▼) บนหน้าจอ LOOP LIMIT setting เพื่อเลื่อนเคอร์เซอร์บนรายการที่จะตั้งค่า แล้ว กดสวิตช์ FNTFR
- (2) จอ LCD แสดงรายการที่เลือกได้ กด F1(▲) หรือ F2(▼) และยืนยันการเลือกด้วยสวิตซ์ ENTER สำหรับ (2) เมื่อการเปลี่ยนแปลงเสร็จสิ้น ให้กด ESC เพื่อกลับไปยังหน้าจอทดสอบ LOOP

พารามิเตอร์ที่เลือกได้และค่าอ้างอิงสำหรับค่าขีดจำกัดแสดงอยู่ด้านล่าง

ประเภทการ		ຄືໄດ	ť -C		MCB				
ป้อง	ป้องกัน		M 19 AC		0)	[)	K
เวลา		0.4 s	5 s	0.4 และ 5 ร	0.4 s	5 s	0.4 s	5 s	0.4 s
	6 A	5Ω	8.84 Ω	7.67 Ω	3.83 Ω	7.67 Ω	1.92 Ω	3.83 Ω	2.73 Ω
	10 A	2.87 Ω	5Ω	4.6 Ω	2.3 Ω	4.6 Ω	1.15 Ω	2.3 Ω	1.64 Ω
	13 A	2.3 Ω	4.1Ω	3.53 Ω	1.77 Ω	3.53 Ω	0.88 Ω	1.77 Ω	1.18 Ω
	16 A	2.15 Ω	3.48 Ω	2.87 Ω	1.44 Ω	2.87 Ω	0.72 Ω	1.44 Ω	1.26 Ω
	20 A	1.58 Ω	2.65 Ω	2.3 Ω	1.15 Ω	2.3 Ω	0.57 Ω	1.15 Ω	0.82 Ω
ใน	25 A	1.27 Ω	2.11 Ω	1.84 Ω	0.92 Ω	1.84 Ω	0.46 Ω	0.92 Ω	0.61 Ω
การจัด	32 A	0.84 Ω	1.44 Ω	1.44 Ω	0.72 Ω	1.44 Ω	0.36 Ω	0.72 Ω	0.51 Ω
อันดับ	35 A	0.74 Ω	1.36 Ω						
	40 A	0.72 Ω	1.21 Ω	1.15 Ω	0.57 Ω	1.15 Ω	0.28 Ω	0.57 Ω	0.41 Ω
	50 A	0.49 Ω	0.87 Ω	0.92 Ω	0.46 Ω	0.92 Ω	0.23 Ω	0.46 Ω	0.33 Ω
	63 A	0.42 Ω	0.72 Ω	0.73 Ω	0.36 Ω	0.73 Ω	0.18 Ω	0.36 Ω	0.26 Ω
	80 A	0.27 Ω	0.51 Ω	0.58 Ω	0.29 Ω	0.58 Ω	0.15 Ω	0.29 Ω	0.2 Ω
	100 A	0.22 Ω	0.39 Ω	0.47 Ω	0.23 Ω	0.47 Ω	0.12 Ω	0.23 Ω	0.16 Ω

ค่าขีดจำกัดของลูปสำหรับการป้องกันฟิวส์

ค่าขีดจำกัดของลูปสำหรับการป้องกัน RCD

	ขืดจำกัด UC	50 V	25 V
l∆n (mA)	30 mA	1667 Ω	833 Ω
	100 mA	500 Ω	250 Ω
	300 mA	167 Ω	83 Ω
	500 mA	100 Ω	50 Ω
	1000 mA	50 Ω	25 Ω

หมายเหตุ: ค่าขีดจำกัดลูปที่แสดงอาจไม่เหมือนกับที่ระบุไว้ข้างต้น ทั้งนี้ขึ้นอยู่กับประเทศและภูมิภาค

11. การทดสอบ RCD

11.1 หลักการวัด RCD

เครื่องทดสอบ RCD จะเชื่อมต่อระหว่างเฟสและตัวนำป้องกันที่ด้านโหลดของ RCD หลังจากปลดการ เชื่อมต่อโหลดแล้ว

กระแสไฟฟ้าที่วัดได้อย่างแม่นยำในช่วงเวลาที่กำหนดอย่างระมัดระวังจะถูกดึงออกจากเฟสและส่ง กลับผ่านทางสายดิน ซึ่งจะตัดวงจรของอุปกรณ์ เครื่องมือจะวัดและแสดงเวลาที่แน่นอนที่ใช้ในการ เปิดวงจร

RCD เป็นอุปกรณ์สวิตซิ่งที่ออกแบบมาเพื่อตัดกระแสไฟฟ้าเมื่อกระแสไฟตกค้างไปถึงค่าที่เจาะจง โดยจะทำงานบนพื้นฐานของความแตกต่างของกระแสไฟฟ้าระหว่างกระแสไฟเฟสที่ไหลไปยังโหลด อื่นและกระแสไฟไหลกลับที่ไหลผ่านตัวนำที่เป็นกลาง (สำหรับการติดตั้งแบบเฟสเดียว) ในกรณีที่ความ ต่างของกระแสไฟฟ้าสูงกว่ากระแสไฟฟ้าตัดวงจร RCD อุปกรณ์จะตัดการเชื่อมต่อและตัดแหล่งจ่ายไฟ จากโหลด

RCD มีสองพารามิเตอร์ ตัวแรกเนื่องจากรูปร่างของรูปแบบคลื่นกระแสไฟตกค้าง (ประเภท AC และ A) และตัวที่สองเนื่องจากเวลาการตัดวุงจร (ประเภท G และ S)

- RCD ประเภท A จะตัดวงจรเมื่อน้ำเสนอด้วยกระแสไฟฟ้าสลับตกค้างรูปคลื่นไซน์ (คล้ายกับ ประเภท AC) และกระแสตรงที่ตกค้างเป็นจังหวะไม่ว่าจะเพิ่มขึ้นอย่างกะทันหันหรือเพิ่มขึ้น อย่างช้าๆ ก็ตาม
- RCD ประเภท F จะตัดวงจร เมื่อนำเสนอด้วยกระแสไฟฟ้าสลับตกค้างรูปคลื่นไซน์ที่ความถึ่ พิกัด กระแสตรงที่ตกค้างเป็นจังหวะ และกระแสไฟฟ้าตกค้างแบบคอมโพสิต การทดสอ RCD ประเภท F ด้วย KEW 6516/6516BT ใช้กระแสไฟฟ้าแบบครึ่งคลื่นเหมือนกับ การทดสอบ RCD ประเภท A
- RCD ประเภท G ในกรณีนี้ G ย่อมาจากประเภททั่วไป (ไม่มีเวลาการตัดวงจร) และมีไว้สำหรับ การใช้งานทั่วไป
- SRCD ประเภท S โดยที่ S หมายถึงประเภทที่เลือก (โดยมีความล่าช้าของเวลาการตัดวงจร) RCD ประเภทนี้ได้รับการออกแบบเฉพาะสำหรับการติดตั้งซึ่งจำเป็นต้องใช้คุณลักษณะหน่วงเวลา
- RCD ประเภท EV ได้รับการออกแบบมาโดยเฉพาะสำหรับระบบชาร์จ EV (ย่านยนต์ไฟฟ้า) ซึ่งจะตัดวงจรโดยกระแสไฟฟ้า DC ตกค้างแบบเรียบ 6 mA

เมื่ออุปกรณ์ป้องกันเป็น RCD โดยทั่วไป Ia จะเป็น 5 เท่าของกระแสไฟฟ้าทำงานตกค้างตามอัตรา I∆ ดังนั้นเวลาการตัดวงจรที่แนะนำสำหรับการทดสอบ RCD ที่วัดโดยเครื่องทดสอบ RCD หรือเครื่อง ทดสอบมัลติฟังก์ชัน จะต้องน้อยกว่าเวลาตัดการเชื่อมต่อสูงสุดที่ กำหนดใน IEC 60364-41 ที่ 230 V / 400 V AC (ดูหัวข้อ LOOP เพิ่มเติม) ซึ่งได้แก่:

ระบบ TT	200 ms	สำหรับวงจรสุดท้ายสูงสุด 63 A สำหรับซ็อกเก็ต หรือ
ระบบ TN	400 ms	สูงสุด 32 A สำหรับโหล _้ ดที่เชื่อมต่อแบบคงที่
ระบบ TT	1000 ms	สำหรับวงจรการจำหน่ายและวงจรดังกล่าวข้างต้นในช่วง
ระบบ TN	5 s	63 A และ 32 A

อย่างไรก็ตาม การใช้ขีดจำกัดเวลาตัดวงจรที่เข้มงวดมากขึ้นถือเป็นแนวปฏิบัติที่ดี โดยติดตามค่า มาตรฐานของเวลาการตัดวงจรที่ I∆n ที่กำหนดโดย IEC 61009 (EN 61009) และ IEC 61008 (EN 61008) ขีดจำกัดเวลาการตัดวงจรเหล่านี้แสดงไว้ในตารางด้านล่าง สำหรับ I∆n และ 5I∆n:

ประเภทของ RCD	l∆n	5l∆n
ทั่วไป (G)	,300 ms	, 40 ms
	ค่าที่อนุญาตสูงสุด	ค่าที่อนุญาตสูงสุด
เลือกได้ (S)	,500 ms	, 150 ms
	ค่าที่อนุญาตสูงสุด	ค่าที่อนุญาตสูงสุด
	_ 130 ms	_ 50 ms _
	ค่าทีอนุญาตต่ำสุด	ค่าทีอนุญาตต่ำสุด

ตัวอย่างการเชื่อมต่อเครื่องมือ

ตัวอย่างในเชิงปฏิบัติของของการทดสอบ RCD 3 เฟส + นิวตรอลในระบบ TT

รูปที่ 11-1

ตัวอย่างในเชิงปฏิบัติของการทดสอบ RCD แบบเฟสเดียวในระบบ TN

ตัวอย่างเชิงปฏิบัติของการทดสอบ RCD กับสายทดสอบการจ่าย

รูปที่ 11-3

11.2 หลักการวัด Uc

ในรูปที่ 11-1 เมื่อการต่อสายดินไม่สมบูรณ์และมี R อยู่ แรงดันไฟฟ้าจะเกิดขึ้นที่ R หากกระแสไฟ ผิดพลาดไหลใน R บุคคลอาจสัมผัสกับแรงดันไฟฟ้านี้ และแรงดันไฟฟ้าที่เกิดขึ้นกับบุคคลในกิจกรรม นี้เรียกว่า Uc

ใช้กระแสไฟฟ้าน้อยที่สุดซึ่งจะไม่ตัดวงจร RCD เพื่อหาอิมพีแดนซ์ของลูป

้แรงดันไฟฟ้า Uc คำนว[ิ]ณตามกระแสไฟตกค้างตามพิกัด (I∆N) พร้อมด้้วยอิมพีแดนซ์ที่วัดได้

(1) กดุสวิตช์ Power และเปิดเครื่องมือ หมุนสวิตช์แบบหมุนและปรับตั้งไปที่ตำแหน่ง RCD ้(2) เชื่อมต่อสายทดสอบเข้ากับเครื่องมือ (_รปที่ 11-5)

ในการวัด AC/ A/ F ประเภท RCD ไม่จำเป็นต้องใช้ขั้ว N

รปที่ 11-5 สำหรับการทดสอบ RCD

(3) กดสวิตช์ F1 แล้วเลือกโหมดการวัดที่ต้องการ

X1/2	สำหรับการทดสอบ RCD เพื่อตรวจสอบว่าไม่มีความไวมากเกินไป
X1	สำหรับการวัดเวลาการตัดวงจร
X5	สำหรับการทดสอบที่ I∆n X5
RAMP(สำหรับการวัดระดับการตัดวงจรใน mA
AUTO	สำหรับการวัดอัตโนมัติในลำดับต่อไปนี้: X1/2(0°), X1/2(180°), X1(0°), X1 (180°), X5(0°), X5(180°)
Uc	สำหรับการวัด Uc

.(4) กดสวิตซ์ F2 เพื่อเลือกกระแสไฟฟ้าตัดวงจรตามพิกัด (I∆n) ที่สอดคล้องกับกระแสไฟฟ้าตัดวงจรตาม พิกัดของ RCD

- (5) กดสวิตช์ F3 เพื่อเลือกประเภท RCD ดูที่ "11.1 หลักการของการวัด RCD" สำหรับรายละเอียดของประเภท RCD (ยกเว้นสำหรับการวัด Uc) (6) กด F4 เพื่อเลือกเฟสที่จะใช้กระแสไฟทดสอบที่ตั้งไว้ล่วงหน้า
- (ยกเว้นสำหรับการวัด Uc)

*การเปลี่ยนแปลงค่า UL

เนื่องจากเป็นค่า UL จึงสามารถเลือกได้ระหว่าง 25 V หรือ 50 V ดูที่ "6. โหมดการตั้งค่า"ในคู่มือนี้แล้ว เลือกอย่างใดอย่างหนึ่ง

- (7) เชื่อมต่อสายทดสอบเข้ากับวงจรที่จะทดสอบ (รูปที่ 11-1,11-2และ 11-3)
- (8) ตรวจสอบการเดินสายไฟ

หลังทำการเชื่อมต่อ โปรดตรวจสอบให้แน่ใจว่าสัญลักษณ์การตรวจสอบการเดินสายไฟบนจอ LCD ้อยู่ในสถานะที่ระบุตามในรูปที่ 11-6 ก่อนกดสวิตช์ท[ั]ดสอบ

ประเภท RCD	L-PE 🔿	L-NO	$\mathbb{A} \bigcirc$
			0
AC/A/F		หรือ	0
B/EV			0

ถ้าสถานะของสัญลักษณ์สำหรับการตรวจสอบการุเดินสายไฟแตกต่างไปจากในรูปที่ 11-6 หรือสัญลักษณ์ 番**〇** ถูกระบุอยู่บันจอ LCD, อย่าดำเนินการต่อเนื่องจากมีการเดินสายไม่ถูกต้อง จะต้องตรวจหาสาเหตุ ของความผิดพลาดและแก้ไข

เมื่อเครื่องมือเชื่อมต่อกับระบบเป็นครั้งแรก เครื่องจะแสดงแรงดันไฟฟ้าสายจ่าย-สายดิน (โหมด L-PE) ้ และสามารถอัปเดตได้ทุกๆ 1 s หากแรงดันไฟฟ้านี้ไม่ปกติหรือไม่เป็นไปตามที่คาดไว้ อย่า`ดำเนินการต่อ หมายเหตุ: อุปกรณ์นี้เป็นอุปกรณ์แบบเฟสเดียว (230 V AC) และไม่ควรเชื่อมต่อกับระบบ 2 เฟสหรือใช้ แรงดันไฟฟ้าเกิน 230 V AC+10% ไม่ว่าในกรณีใดก็ตาม

หากแรงดันไฟฟ้าอินพุตมากกว่า 260 V จอแสดงผลจะระบุว่า ">260V" และไม่สามารถทำการวัด RCD ได้แม้ว่าจะกดสวิตช์ทดสอบก็ตาม

(9) การวัด RCD

ากดสวิตช์ทดสอบ เสียงบี้ปจะดังขึ้นขณะทำการทดสอบและแสดงผลลัพธ์ที่วัดได้

- X1/2.....เบรกเกอร์ไม่ควรตัดวงจร
- X1.....เบรกเกอร์ควรตัดวงจร
- X5.....เบรกเกอร์ควรตัดวงจร
- Auto Ramp(🖌)..เบรกเกอร์ควรตัดวงจร ควรแสดงกระแสไฟฟ้าตัดวงจร
- Uc.....ค่า Uc แสดงขึ้น

ในกรณีการทดสอบ RCD ประเภท S คุณต้องรอ 30 วินาทีก่อนเริ่มการทดสอบ: เวลารอนี้เพื่อ ลดอิทธิพลของการทดสอบครั้งก่อน

(10) กดสวิตช์ F4 (0°(+)/180°(-)) เพื่อเปลี่ยนเฟสและทำซ้ำขั้นตอน (1)

อาจหมุนสวิตช์ทดสอบตามเข็มนาฬิกาเพื่อล็อกสวิตช์ได้ ในโหมดอัตโนมัตินี้ เมื่อใช้สายทดสอบ แผงการจ่าย MODEL 7246 การทดสอบทำโดยเพียงแค่ถอดและเชื่อมต่อสายสีแดงของ MODEL 7246 โดยไม่ต้องกดสวิตช์ทดสอบ นั่นคือ "แฮนด์สฟรี"

- ถ้าสัญลักษณ์ (20) ปรากฏขึ้น หมายความว่าตัวต้านทานทดสอบร้อนเกินไป และคุณสมบัติตัดวงจร อัตโนมัติถูกเปิดใช้งาน ปล่อยให้เครื่องมือเย็นลงก่อนดำเนินการต่อ วงจรความร้อนเกินจะช่วยป้องกัน ตัวต้านทานการทดสอบจากความเสียหายเนื่องจากความร้อน
- ต้องแน่ใจว่าได้ปรับ RCD ที่ทดสอบแล้วกลับคืนสู่สภาพเดิมหลังการทดสอบ
- เมื่อแรงดันไฟฟ้า Uc เพิ่มขึ้นไปที่ค่า UL หรือมากกว่า การวัดจะถูกระงับโดยอัตโนมัติ และ "Uc > UL" จะแสดงบนจอ LCD
- หากการตั้งค่า " I∆n" มีค่ามากกว่ากระแสไฟตกค้างที่กำหนดของ RCD RCD จะตัดการทำงานและ "no" อาจแสดงบน LCD
- หากมีแรงดันไฟฟ้าระหว่างตัวนำป้องกันและดิน อาจส่งผลต่อการวัดได้
- หากมีแรงดันไฟฟ้าอยู่ระหว่างสายนิวตรอลและสายดิน อาจส่งผลต่อการวัดได้ ดังนั้น ควรตรวจสอบ การเชื่อมต่อระหว่างจุดนิวตรอลของระบการจ่ายกับดินก่อนการทดสอบ
- หากมีกระแสไฟรั่วไหล[้]ในวงจุรที่เชื่อมต่อกับด้านโหลดของ RCD อาจส่งผลต่อการวัด
- สนามศักย์ไฟฟ้าของการติดตั้งสายดินอื่นๆ อาจส่งผลต่อการวัด
- ควรคำนึงถึงเงื่อนไขพิเศษของ RCD ในการออกแบบเฉพาะ เช่น ประเภท S
- ความต้านทานของอิเล็กโทรดดินของวงจรการวัดที่มีโพรบต้องไม่เกินค่าความต้านทานของอิเล็กโทรด ดินที่ระบุในตารางด้านล่างคำอธิบายที่เกี่ยวข้องกับ RCD ในหัวข้อ 5.4 ความไม่แน่นอนในการทำงาน
- อุปกรณ์ที่เชื่อมต่อกับด้านโหลดของ RCD เช่น ตัวเก็บประจุหรือเครื่องจักรแบบหมุน อาจทำให้เวลา การตัดวงจรที่วัดได้นานขึ้นอย่างมาก

11.4 การทดสอบ Auto

การวัดจะดำเนินการโดยอัตโนมัติภายใต้ฟังก์ชัน Auto Test ตามลำดับต่อไปนี้: X1/2(0°), X1/2(180°), X1(0°),X1 (180°), X5(0°), X5(180°).

- (1) กด F1 เพื่อเลือก Auto
- (2) กด F2 และ F3 เพื่อเลือก I∆n และประเภท RCD
- (3) KEW 6516/6516BT จะทำการทดสอบ RCD ตามลำดับที่อธิบายไว้ด้านบน
- (4) เมื่อ RCD ตัดวงจร ให้เปิดเครื่องอีกครั้ง จากนั้น การทดสอบครั้งถัดไปจะเริ่มต้นโดยอัตโนมัติ
- (5) จอ LCD แสดงผลลัพธ์ดังนี้

11.5 ฟังก์ชัน VAR (variable current value)

ในการทดสอบ RCD ด้วย KEW 6516/6516BT สามารถเลือกค่า I∆n ใดๆ ระหว่าง 10 mA ถึง 1000 mA ได้ อย่างไรก็ตาม สำหรับการทดสอบ X5 หรือขึ้นอยู่กับการตั้งค่าการทดสอบ RCD ที่เลือก ช่วงตัวแปรของค่า กระแสไฟฟ้าจะถูกจำกัด

ปฏิบัติตามขั้นตอนด้านล่างเพื่อเปลี่ยนค่ากระแสไฟฟ้า

- (การกดสวิตซ์ ESC ในระหว่างกระบวนการเปลี่ยนแปลงสามารถย้อนกลับไปยังขั้นตอนก่อนหน้าได้)
- ้(1) กด F1 และ F3 เพื่อเลือกโหมดการวัด และประเภท RCD
- (2) กดสวิตซ์ F2 เพื่อเลือก "VAR"
- (3) ์จอ LCD จะแสดงค่ากระแสไฟฟ้า 2 วินาที (รูปที่ 11-8) กดสวิตซ์ F1 (SET) ภายใน 2 วินาทีดังกล่าว (ไม่ได้กดสวิตซ์ภายในเวลา 2 วินาทีหรือนานกว่านั้น ให้กดปุ่ม F2 อีกครั้งเพื่อแสดงหน้าจอของรูปที่ 11-8 อีกครั้ง)
- (4) จอ LCD แสดงหน้าจอการเปลี่ยนค่ากระแสไฟฟ้า (รูปที่ 11-9) กด F3(◀) หรือ F4(►) เพื่อเลือกตัวเลขที่จะเปลี่ยนและแก้ไขค่าด้วย F1(▲) หรือ F2(▼)
- (5) กด ENTER เพื่อยืนยันการเปลี่ยนแปลง จากนั้นหน้าจอจะกลับสู่โหมดสแตนด์บายสำหรับการทดสอบ RCD

หมายเหตุ: เมื่อทำการทดสอบ VAR, X1/2, X1, และ X5 การทดสอบเหล่านี้จะใช้ไม่ได้ในการทดสอบ Uc, AUTO และ RAMP

11.6 EV RCD

เมื่อเลือก "EV" สำหรับ RCD TYPE เครื่องมือสามารถทดสอบ RCD สำหรับเครื่องชาร์จ EV ซึ่งจะ ตัดวงจรที่ 6 mA DC: x1, RAMP(1) และ AUTO TEST สามารถเลือกได้

- ที่ RAMP กระแสไฟฟ้าจะเพิ่มขึ้นอย่างต่อเนื่องไปยัง 6 mA DC (100%)
 เมื่อไปถึง 6 mA DC กระแสไฟฟ้าจะถูกรักษาระดับเป็นเวลา 10 วินาที (สอดคล้องกับมาตรฐาน IEC 62752)
- ใน AUTO TEST เครื่องมือจะทำการทดสอบที่ 6 mA DC และ ×1/2, ×1, and ×5 การทดสอบที่ 30 mA AC ตามที่แสดงด้านล่าง

 $\mathsf{DC6mA}(+) \to \mathsf{DC6mA}(-) \to \mathsf{X1/2}(0^\circ) \to \mathsf{X1/2}(180^\circ) \to \mathsf{X1}(0^\circ) \to$

12. การทดสอบสายดิน

12.1 หลักการของการวัดดิน

ฟังก์ชัน Earth นี้คือการทดสอบสายจ่ายไฟฟ้า ระบบการเดินสายไฟภายใน เครื่องใช้ไฟฟ้า ฯลฯ เครื่องมือนี้ทำการวัดความต้านทานดินด้วยวิธี Fall-of-Potential ซึ่งเป็นวิธีการเพื่อให้ได้ค่า ความต้านทานดิน Rx โดยการใช้กระแสไฟคงที่ AC I ระหว่างวัตถุการวัด E (อิเล็กโทรดดิน) และ H(C) (อิเล็กโทรดกระแสไฟฟ้า) และค้นหาความ แตกต่างศักย์ไฟฟ้า V ระหว่าง E และ S(P) (อิเล็กโทรดที่มีศักย์ไฟฟ้า) Rx = V / I

12.2 การวัดความต้านทานดิน

่∆คำเตือน

(E) ดิน

เครื่องมือนี้จะสร้างแรงดันไฟฟ้าสูงสุดประมาณ 50 V ระหว่างขั้ว E-H(C) ในฟังก์ชันความ ต้านทานดิน ใช้ความระมัดระวังอย่างเพียงพอเพื่อหลีกเลี่ยงอันตรายจากไฟฟ้าช็อต

Aข้อควรระวัง

เมื่อทำการวัดความต้านทานดิน ห้ามจ่ายแรงดันไฟฟ้าระหว่างขั้วการวัด

12.3 วิธีการวัดสำหรับดิน

(1) กดสวิตช์ Power และเปิดเครื่องมือ หมุนสวิตช์แบบหมุนและปรับตั้งไปที่ตำแหน่ง EARTH

(2) กุดสวิตซ์ F1 เพื่อเลือก 3W (การวัดความที่แม่นยำ 3 สาย) หรือ 2W (การวัดที่แม่นยำ 2 สาย) (3) เชื่อมต่อสายพดสอบเข้ากับเครื่องบือ (รูปที่ 12-2 รูปที่ 12-3)

(3) เชื่อมต่อสายทดสอบเข้ากับเครื่องมือ (รูปที่ 12-2, รูปที่ 12-3)

รูปที่12-2 สำหรับการทดสอบ 3W (การวัดที่แม่นยำ)

ขั้ว H(C)
สายไฟสีแดงของ MODEL 7246 หรือ
MODEL 7281 หัวทดสอบพร้อม
รีโมทสวิตช์
ขั้ว E
สายไฟสีเขียวของ MODEL 7246

รูปที่ 12-3 สำหรับการทดสอบ 2W (การวัดแบบง่าย)

(4) การเชื่อมต่อ

์การทดสอบ 3W (การวัดที่แม่นยำ)

ติดตั้งหลักดินเสริม[์] S(P) และ H(C) ล[ุ]งในดินให้ลึก ควรจัดวางให้ห่างจากอุปกรณ์ต่อสายดินที่ทดสอบในช่วง 5-10 m เชื่อมต่อสายสีเขียวเข้ากับอุปกรณ์ต่อสายดินที่ทดสอบ สายสีเหลืองเข้ากับหลักดินเสริมS(P) และ สายสีแดงเข้ากับหลักดินเสริม H(C) จากขั้ว E, S(P) และ H(C)ของเครื่องมือตามลำดับ

หมายเหตุ:

- ตรวจสอบให้แน่ใจว่าได้ติดตั้งหลักดินเสริมไว้ในส่วนที่ชื้นของดิน ให้น้ำเพียงพอในตำแหน่งที่จะต้อง ติดตั้งหลักดินูลงในส่วนที่แห้ง เป็นหิน หรือเป็นทรายของพื้นดิน เพื่อให้ดินมีความชื้น
- ในกรณีของพื้นคอนกรีต ให้วางหลักดินเสริมลงแล้วรดน้ำ หรือใส่ผ้าเปียกติดฝุ่น ฯลฯ บนหลักดิน เมื่อทำการวัด

การทดสอบ 2W (การวัดแบบง่าย)

ใช้วิธีนี้เมื่อไม่สามารถติดตั้งหลักดินเสริมได้ ในวิธีนี้ สามารถใช้อิเล็กโทรดดินที่มีอยู่ซึ่งมีความ ต้านทานสายดินต่ำ เช่น ท่อน้ำที่เป็นโลหะ ระบบรากสายดินของแหล่งจ่ายไฟเชิงพาณิชย์ และขั้ว สายดินของอาคาร สามารถใช้ด้วยวิธีแบบสองขั้วได้

Rx = Re – re Rx: ความต้านทานดินจริง Re: ค่าที่บ่งชี้ re: ความต้านทานดินของอิเล็กโทรดดิน

- (5) หากคำเตือน "วงจรมีกระแสไฟฟ้าไหลผ่าน" แสดงขึ้นบนจอ LCD และ/หรือออดส่งเสียงดัง **ห้ามกดสวิตช์ทดสอบ** แต่ให้ปลดการเชื่อมต่ออุปกรณ์ออกจากวงจร ทำให้วงจรไม่มีการจ่ายไฟ ก่อนดำเนินการต่อ
- (6) กดสวิตช์ทดสอบ หน้าจอจะแสดงความต้านทานดินของวงจร
- ถ้าการวัดทำโดยที่โพรบที่บิดหรือสัมผัสกัน การอ่านค่าของเครื่องมืออาจได้รับอิทธิพลจากการ เหนี่ยวนำ เมื่อเชื่อมต่อโพรบ ให้แน่ใจว่าโพรบแยกออกจากกัน
- หากความต้านทานดินของหลักดินเสริมสูงเกินไป อาจส่งผลให้การวัดค่าไม่ถูกต้อง ตรวจสอบให้ แน่ใจว่าได้ติดตั้งหลักดินเสริมในส่วนที่ชื้นของดิน และให้แน่ใจว่ามีการเชื่อมต่อที่เพียงพอระหว่าง การเชื่อมต่อที่เกี่ยวข้อง ความต้านทานดินเสริมสูงอาจมีอยู่หาก "RS Hi" หรือ "RH Hi" แสดงขึ้น ในระหว่างการวัด

("RS Hi" จะแสดงขึ้นเฉพาะเมื่อคุณได้กดปุ่มทดสอบเพื่อเริ่มการวัดเท่านั้น แต่จะไม่ปรากฏ ขึ้นหากเกิดเหตุการณ์ใดๆ เช่น ปลั๊กดินเสริมถูกตัดการเชื่อมต่อ ในระหว่างการวัด)

 เมื่อแรงดันไฟฟ้าสายดินเท่ากับ 10 V หรือสูงก²่าว่า (400 Hz: 3 V) อยู่แล้ว ความต้านทานดินที่วัด ได้อาจมีข้อผิดพลาดขนาดใหญ่ เพื่อหลีกเลี่ยงปัญหานี้ ให้ทำการวัดหลังจากลดแรงดันไฟฟ้าลง โดยปิดแหล่งจ่ายไฟของอุปกรณ์ที่เชื่อมต่อกับอิเล็กโทรดสายดินภายใต้การทดสอบ เป็นต้น

13. การทดสอบลำดับเฟส

1. กดสวิตช์ไฟและเปิดเครื่องมือ เปิดสวิตช์แบบหมุนและเลือกฟังก์ชัน PHASE ROTATION 2. เชื่อมต่อสายทดสอบเข้ากับเครื่องมือ (รูปที่ 13-1)

3. เชื่อมต่อสายทดสอบแต่ละสายเข้ากับวงจร (รูปที่13-2)

4. ผลลัพธ์จะแสดงดังนี้

- เมื่อมีข้อความ "No 3-phase system" หรือ "---" ปรากฏขึ้น แสดงว่าวงจรอาจไม่ใช่ระบบ 3 เฟส หรือการเชื่อมต่อสายไฟไม่ถูกต้อง ตรวจสอบวงจรและการเชื่อมต่อ
- การมีอยู่ของฮาร์โมนิคในแร[้]งดันไฟฟ้าที่วัด เช่น แหล่งจ่ายไฟของอินเวอร์เตอร์ อาจส่งผลต่อผลลัพธ์ ที่วัดได้

14. โวลต์

- (1) กดสวิตซ์ Power และเปิดเครื่องมือ เปิดสวิตซ์แบบหมุนและฟังก์ชัน VOLTS
- (2) เชื่อมต่อสายทดสอบเข้ากับเครื่องมือ (รูปที่ 14-1)

(3) ค่าแรงดันไฟฟ้าและความถี่จะแสดงบนจอ LCD เมื่อใช้แรงดันไฟฟ้า AC หมายเหตุ: ข้อความ "DC V" อาจปรากฏขึ้นเมื่อทำการวัดแรงดันไฟฟ้า AC ที่มีความถี่อยู่นอกช่วง 45 Hz – 65 Hz

15. ทัชแพด

(1) ทัชแพดจะวัดศักย์ไฟฟ้าระหว่างผู้ปฏิบัติงานกับขั้ว PE ของเครื่องทดสอบ ข้อความ "PE HiV" จะแสดงบนจอ LCD พร้อมเสียงออดถ้ามีความต่างศักย์ 100 V หรือมากกว่าระหว่าง the ผู้ปฏิบัติงานกับขั้วต่อ PE เมื่อสัมผัสทัชแพด

(2) สามารถเปิดใช้งานและปิดใช้งานฟังก์ชันทัชแพดได้ (ON / OFF)

์ดู "6. โหมดการตั้งค่า" เในคู่มือนี้แล้วเลือก ON หรือ OFF ในกรณี่ที่เลือก OFF คำเตือนสำหรับ "PE HiV"จะไม่ปรากฏขึ้นและไม่มีเสียงออดดัง

* การตั้งค่าเริ่มตั้น: ON

หมายเหตุ: ข้อความ "PE HiV" อาจปรากฏขึ้นเมื่อทดสอบอินเวอร์เตอร์หรือวัดแรงดันไฟฟ้าที่มี ความถี่สูงแม้ว่าผู้ใช้จะไม่ได้สัมผัสกับทัชแพดก็ตาม

16. ฟังก์ชันหน่วยความจำ

ผลลัพธ์ที่วัดได้ในแต่ละฟังก์ชันสามารถบันทึกลงในหน่วยความจำของอุปกรณ์ได้ (สูงสุด: 1000)

16.1 วิธีการบันทึกข้อมูล

้บันทึกผลลัพธ์ตามลำดั**้บ**ต่อไปนี้ (กดสวิตช์ ESC ในระหว่างกระบวนการเพื่อกลับไปยังขั้นตอนก่อนหน้า)

- กดสวิตช์ F1(▲) หรือ F2(▼) เพื่อเลือกพารามิเตอร์ที่จะเปลี่ยนแปลง หมายเลข CIRCUIT → หมายเลข BOARD → หมายเลข SITE → DATA No. → หมายเลข CIRCUIT...
- กดสวิตซ์ ENTER เพื่อเลือกพารามิเตอร์ที่จะเปลี่ยนแปลง
- ใช้ F1(▲) หรือ F2(▼) เพื่อเปลี่ยนค่าของพารามิเตอร์และยืนยันด้วยสวิตช์ ENTER ช่วงที่เลือกได้ แสดงอยู่ในตารางด้านล่าง

หมายเลข CIRCUIT	0-99
หมายเลข BOARD	0-99
หมายเลข SITE	0-99
DATA No.	0-999

(3) การกดสวิตช์ F4 หรือ MEM จะบันทึกข้อมูลที่วัดได้

หมายเหตุ: การกดสวิตซ์ ESC สามารถย้อนกลับไปยังขั้นตอนก่อนหน้าได้

16.2 เรียกคืนข้อมูลที่บันทึกไว้

สามารถแสดงข้อมูู้ลที่บันทึกไว้บนจอ LCD ตามลำดับต่อไปนี้ (การกดสวิตซ์ ESC สามารถย้อนกลับไปยังหน้าจอก่อนหน้าได้)

(4) กดปุ่ม F4 (EDIT) เพื่อแก้ไขพารามิเตอร์ที่ตั้งค่าไว้ขณะบันทึก จอแสดงผล LCD จะเป็นดังดังนี้ เปลี่ยนพารามิเตอร์ - ขั้นตอนเหมือนกับการบันทึกข้อมูล -และบันทึกอีกครั้ง อย่างไรก็ตาม จะไม่สามารถเปลี่ยนแปลง DATA No. ได้

MEMORY -RECALL	-			17/12/2019 13:26
INSULATION	V -	500V		
0.62	МΩ			
minΜΩ				
IAR PI				
<u>AR Pl -</u>		DATA No	0.0	0
		DATA No.	00	8
CIRCUIT: 04		DATA No. DATE	00	8
CIRCUIT: 04 BOARD: 05		DATA No. DATE 17/12/2	00 019	8
CIRCUIT: 04 BOARD: 05 SITE: 08	5 5	DATA No. DATE 17/12/20 13:10:	00 019 36	⁸

16.3 ลบข้อมูลที่บันทึกไว้

(1) วิธีลบข้อมูลที่บันทึกไว้:

กด F3 ค้างไว้ในสถานะดังรูปที่ 16-7 แสดงไว้ เพื่อลบข้อมูล ข้อความยืนยันจะปรากฏขึ้นตามที่แสดงอยู่ด้านล่าง กดสวิตซ์ F3 เพื่อลบข้อมูล

รูปที่ 16-7

(2) เมื่อต้องการลบข้อมูลทั้งหมด:

กด F4 ค้างไว้ในสถ[้]านะดังรูปที่ 16-8 แสดงไว้ เพื่อลบข้อมูลทั้งหมด ข้อความยืนยันจะปรากฏขึ้นตามที่แสดงอยู่ด้านล่าง กดสวิตช์ F4 เพื่อลบข้อมูลทั้งหมด

MEMORY -RECALL-			17/12/2019 13:36				
NO.	DATE			FUNCTI	ON	MODE	
008	17/1	2/2019	13:10	INSULA	TION	500V	
007	17/1	2/2019	13:08	LOOP H	IGH	L-PE	
006	17/1	2/2019	13:07	LOOP A	TT	2W	
005	17/1	2/2019	Delete	all?			
004	17/1	2/2019	13:05	PHASE			
003	17/1	2/2019	13:05	VOLTS			
002	17/1	2/2019	13:04	EARTH		2W	
001	17/1	2/2019	13:03	CONTIN	UITY	200mA	
			V		AI	L DEL	ETE

รูปที่ 16-8

ี่ 17. ถ่ายโอนข้อมูลที่จัดเก็บไว้ไปยัง PC

ข้อมูลที่จัดเก็บไว้สามารถถ่ายโอนไปยัง PC ผ่านอะแดปเตอร์แบบออปติคัล MODEL 8212USB

จากนั้นผลภาพผาสิ่ง Download และขอมูล ณ Kew 65167 651661 จะถูกกายเอนเบยง Po ของคุณ โปรดดูคู่มือการใช้งาน MODEL 8212USB และส่วน HELP ของ KEW Report สำหรับรายละเอียดเพิ่มเติม

หมายเหตุ: ใช้ "KEW Report" เวอร์ชัน 2.80 หรือใหม่กว่า สามารถดาวน์โหลด "KEW Report" เวอร์ชันล่าสุดได้จากเว็บไซต์ของเรา

18. การสื่อสารผ่าน Bluetooth (KEW 6516BT เท่านั้น)

18.1 การสื่อสารผ่าน Bluetooth

KEW 6516BT มีฟังก์ชันการสื่อสารผ่าน Bluetooth และสามารถแลกเปลี่ยนข้อมูลกับอุปกรณ์แท็บ เล็ต Android/ iOS ได้ (ไม่มีใน KEW 6516)

ก่อนเริ่มใช้ฟังก์ชันนี้ ให้ดาวน์โหลดแอปพลิเคชันพิเศษ "KEW Smart Advanced" ผ่านอินเทอร์เน็ต มีบางฟังก์ชันจะใช้งานได้ขณะที่เชื่อมต่อกับอินเทอร์เน็ตเท่านั้น สำหรับรายละเอียดเพิ่มเติม โปรดดู "18.2 KEW Smart Advanced"

\land คำเตือน

คลื่นวิทยุในการสื่อสารผ่าน Bluetooth อาจส่งผลต่อการทำงานของอุปกรณ์อิเล็กทรอนิกส์ทาง การแพทย์ได้ ควรใช้ความระมัดระวังเป็นพิเศษเมื่อใช้การเชื่อมต่อ Bluetooth ในพื้นที่ที่มีอุปกรณ์ ดังกล่าวอยู่

ข้อควรระวัง:

- การใช้เครื่องมือนี้หรืออุปกรณ์แท็บเล็ตใกล้กับอุปกรณ์ LAN ไร้สาย (IEEE802.11.b/g) อาจทำให้ เกิดการรบกวนทางวิทยุ ความเร็วในการสื่อสารลดลง ส่งผลให้เกิดความล่าช้าอย่างมากต่อ อัตราการอัปเดตการแสดงผลระหว่างเครื่องมือและอุปกรณ์แท็บเล็ต ในกรณีนี้ ให้จัดวาง เครื่องมือนี้และอุปกรณ์แท็บเล็ตให้ห่างจากอุปกรณ์ LAN ไร้สาย หรือปิดอุปกรณ์ LAN ไร้สาย หรือลดระยะห่างระหว่างเครื่องมือนี้และอุปกุรณ์แท็บเล็ต
- อาจเป็นเรื่องยากการสร้างการเชื่อมต่อการสื่อสาร หากเครื่องมือหรืออุปกรณ์แท็บเล็ตอยู่ใน กล่องโลหะ ในกรณีดังกล่าว ให้เปลี่ยนตำแหน่งการวัดหรือนำสิ่งกีดขวางที่เป็นโลหะระหว่าง เครื่องมือและอุปกรณ์แท็บเล็ตออก
- หากข้อมูลรั่วไห[่]ลเกิดขึ้นในขณะที่ทำการสื่อสารโดยใช้ฟังก์ชัน Bluetooth เราจะไม่รับผิดชอบ ต่อเนื้อหาที่เผยแพร่ใดๆ
- อุปกรณ์แท็บเล็ตบางรุ่น แม้ว่าแอปพลิเคชั่นจะทำงานอย่างถูกต้อง แต่อาจไม่สามารถสื่อสาร กับอุปกรณ์ได้ โปรดใช้อุปกรณ์แท็บเล็ตอื่นและพยายามติดต่อสื่อสาร หากคุณยังคงไม่สามารถ ยืนยันการเชื่อมต่อได้ อาจเกิดปัญหากับตัวเครื่องมือ โปรดติดต่อผู้จัดจำหน่าย KYORITSU ในท้องถิ่นของคุณ
- เครื่องหมายคำและโลโก้ Bluetooth เป็นของ Bluetooth SIG, Inc. และเรา KYORITSU ได้รับ อนุญาตให้ใช้งาน
- Android, Google Play Store และ Google Maps เป็นเครื่องหมายการค้าหรือเครื่องหมาย การค้าจดทะเบียนของ Google Inc.
- iOS เป็นเครื่องหมายการค้าห[ื]รือเครื่องหมายการค้าจดทะเบียนของ Cisco
- Apple Store เป็นเครื่องหมายบริการของ Apple Inc.
- ในคู่มือนี้ เครื่องหมาย "TM" และ "®" จะถูกละไว้

18.2 KEW Smart Advanced

แอปพลิเคชันพิเศษ "KEW Smart Advanced" มีให้ดาวน์โหลดได้ฟรีบนเว็บไซต์ (ต้องมีการเข้าถึง อินเทอร์เน็ต) โปรดทราบว่าจะมีค่าธรรมเนียมการสื่อสารแยกต่างหากสำหรับการดาวน์โหลดแอป พลิเคชันและการใช้คุณสมบัติพิเศษของแอปพลิเคชันเหล่านั้น โปรดทราบว่า "KEW Smart Advanced" จัดไว้ให้ทางออนไลน์เท่านั้น

คุณสมบัติของ KEW Smart Advanced:

- การตรวจสอบ/ การตรวจเช็คจากระยะไกล
- ฟังก์ชันบันทึก/เรียกคืนข้อมูล
- การแสดงแผนที่

สามารูถตรวจสอบตำแหน่งที่วัดได้บน Google Maps หากข้อมูลที่บันทึกไว้มีข้อมูลตำแหน่ง GPS

 การแก้ไขข้อคิดเห็น สามารถบันทึกผลลัพธ์ที่วัดได้พร้อมข้อคิดเห็นได้

สามารถตรวจสอบข้อมูลล่าสุดเกี่ยวกับ "KEW Smart Advanced" ได้จากเว็บไซต์บน Google Play Store หรือ App Store

19. การปิดอัตโนมัติ

้เครื่องมือนี้มีฟังก์ชันปิดอัตโนมัติ เมื่อเครื่องมือไม่ทำงานเป็นเวลาประมาณ 10 นาที เครื่องมือจะปิดโดยอัตโนมัติ

ฟังก์ชันปิดเครื่องอัตโนมัติจะไม่ทำงานในระหว่างการวัด ในขณะที่ใช้แรงดันไฟฟ้า และกำลังมีการ สื่อสารผ่าน Bluetooth (KEW 6516BT เท่านั้น)

หากไม่มีการใช้งานปุ่มใดๆ เป็นเวลา 2 นาที ไฟแบ็คไลท์จะหรี่ลงโดยอัตโนมัติ การกดปุ่มใดๆ จะคืน ค่าความสว่าง

20. การเปลี่ยนแบตเตอรี่และฟิวส์

\land อันตราย

- อย่าเปิดฝาครอบช่องใส่แบตเตอรี่ ถ้าเครื่องมือเปียก
- อย่าเปลี่ยนแบตเตอรี่หรือฟิวส์ในระหว่างการวัด เพื่อหลีกเลี่ยงไฟช็อต ให้ปิดเครื่องและถอดสาย ทดสอบทั้งหมดออกก่อนเปลี่ยนแบตเตอรี่หรือฟิวส์
- ต้องปิดฝาครอบช่องใส่แบตเตอรี่และขันสกรูก่อนทำการวัด

20,1 การเปลี่ยนแบตเตอรี่

เปลี่ยนแบตเตอรี่ด้วยแบตเตอรี่ใหม่เมื่อตัวบ่งชี้แบตเตอรี่แสดง "]] ระดับแบตเตอรี่เกือบหมดแล้ว

\land ข้อควรระวัง

- อย่าใส่แบตเตอรี่ใหม่และแบตเตอรี่เก่าปนกัน หรือใช้แบตเตอรี่ประเภทต่างกันปนกัน
- ติดตั้งแบตเตอรี่โดยใส่ขั้วให้ถูกต้องตามที่ทำเครื่องหมายไว้ภายในช่องใส่
- (1) ปิดเครื่องและยกเลิกการเชื่อมต่ออุปกรณ์ทดสอบทั้งหมดจากเทอร์มินัล
- (2) ไขสุกรูสองตัวออกและถอดฝาครอบช่องใส่แบตเตอรื่ออก (รูปที่ 20-1)
- . (3) เปลี่ยน[ี]่แบตเตอรี่ทั้งหมดแปดก้อนด้วยแบตเตอรี่อันใหม่ทัน[ั]ที สังเกตขั้วที่ถูกต้องเมื่อใส่แบตเตอรี่ ใหม่<u>แบตเตอรี่: แบตเตอรี่อัลคาไลน์ขนาด AA (LR6) x 8 ก้อน</u>
- (4) ใส่ฝาครอบช่องใส่แบตเตอรี่และยึดฝาครอบด้วยสกรูสองตัว

หมายูเหตุ:

การตั้งค่านาฬิกาจะถูกล้าง หากไม่มีการใส่แบตเตอรี่ในเครื่องมือเป็นเวลา 10 นาที หรือนานกว่านั้น เมื่อจำเป็นต้องเปลี่ยนแบตเตอรี่ ต้องระวังไม่ให้เกินระยะเวลาดังกล่าว หากการตั้งค่านาฬิกาถูกล้าง และคืนค่าเป็นค่าเริ่มต้น โปรดทำการตั้งค่าอีกครั้ง

20.2 การเปลี่ยนฟิวส์

วงจรทดสอบความต่อเนื่องได้รับการป้องกันโดยฟิวส์ประเภทเซรามิก HRC 600 V 0.5 A ซึ่งอยู่ใน ช่องใส่แบตเตอรี่พร้อมฟิวส์สำรอง

ฟิวส์: F 0.5 A 600 V (Ф6.3 x 32 mm)

SIBA 7009463.0,5

- ขั้นตอน
- (1) หากเครื่องมือไม่สามารถทำงานในโหมดทดสอบความต่อเนื่อง ก่อนอื่นให้ยกเลิกการเชื่อมต่อ ลูกค้าเป้าหมายการทดสอบจากเครื่องมือ
- (2) ไขสกรูสองตัวออกและถอดฝาครอบช่องใส่แบตเตอรื่ออก (รูปที่ 20-1)
- (3) ถอดพิ้วส์และตรวจสอบความต่อเนื่องด้วยเครื่องทดสอบคว^{ิ้}ามต่อเนื่องเครื่องอื่น ถ้าฟิวส์ระเบิด ให้เปลี่ยนด้วยฟิวส์สำรอง
- (4) ใส่ฝาครอบช่องใส่แบตเตอรี่และยึดฝาครอบด้วยสกรูสองตัว

รูปที่ 20-1

21. การซ่อมบำรุง

หากเครื่องทดสอบนี้ทำงานไม่ถูกต้อง ให้ส่งคืนให้กับผู้จัดจำหน่ายของคุณโดยระบุลักษณะที่แท้จริงของ ข้อผิดพลาด ก่อนส่งคืนเครื่องมือ ตรวจสอบให้แน่ใจว่า:

(1) ตรวจสอบสายตัวนำสำหรับความต่อเนื่องและร่องรอยของความเสียหายแล้ว

(2) มีการตรวจสอบฟิวส์โหมดต่อเนื่อง (อยู่ในช่องใส่แบตเตอรี่) แล้ว

(3) แบตเตอรื่อยู่ในสภาวะที่ดี

. โปรดอย่าลืมที่จ[ื]่ะให้ข้อมูลทั้งหมดที่เป็นไปได้เกี่ยวกับลักษณะของข้อผิดพลาด เนื่องจากจะทำให้ เครื่องมือได้รับการบริการและส่งคืนให้คุณเร็วขึ้น

22. กระเป๋าและชุดสายรัด

ติดสายรัดตามขั้นตอนต่อไปนี้ โดยการแขวนเครื่องมือไว้รอบคอ จะช่วยให้มือทั้งสองข้างจะว่าง สำหรับการทดสอบ

(1) ติดหัวเข็มขัดเข้ากับ KEW 6516/6516BT ตามที่แสดงในรูปที่ 22-1

จับคู่รูของหัวเข็มขัดกับส่วนที่ยืนออกมาที่ด้านข้างของ KEW 6516/ 6516BT แล้วเลื่อนขึ้นด้านบน

(2) วิธีการติดแผ่นรองไหล่:

วางแผ่นรองไหล่รองหนุนผ่านสายรัด

(3) วิธีการติดตั้งสายคาด:

รูปที่ 22-3 สอดสายรัดลงไปผ่านเข็มขัดล็อกจาก ด้านบนและด้านบน

(4) วิธีการรัดสายคาดให้แน่น:

รูปที่ 22-4

สอดสายรัดผ่านหัวเข็มขัดล็อก ปรับสายรัดให้ยาวและยึดแน่น

Kyoritsu ขอสงวนสิทธิ์ในการเปลี่ยนแปลงข้อมูลจำเพาะหรือการออกแบบที่ ระบุไว้ในคู่มือนี้โดยไม่ต้องแจ้งให้ทราบล่วงหน้าและไม่มีข้อผูกมัด

KYORITSU ELECTRICAL INSTRUMENTS WORKS, LTD.

2-5-20,Nakane, Meguro-ku, Tokyo, 152-0031 Japan Phone: +81-3-3723-0131 Fax: +81-3-3723-0152 Factory: Ehime,Japan

www.kew-ltd.co.jp