

デジタル式高電圧絶縁抵抗計

KEW 3128

₭ 共立電気計器株式会社

目	次
---	---

目			次·	•••	•••	• • •	• • • •	••••	•••	••	•••	•••	•••	•••	•••	• • •	•••	•••	•••	•••	••	•••	•••	·· 2
1.	使	用.	上の	ごえ	主意	(중	? 全	に関	す	るこ	ご注	意) •	•••	•••	•••	•••	•••	•••	••••	•••	•••	• •	•• 4
2.	特		長	•••		• • •	• • • •		•••	•••	•••	•••	•••	•••	•••	• • •	•••	•••	•••	••••	•••	•••	• • •	•• 8
3.	什		様	•••					•••	•••		•••							•••					• 10
4	么	部	ወ ደ	耘																				• 17
- .	4.	1	正正	ī少 ī [汉]																				• 17
	4.	2	側面	, 「 部								•••							•••					•19
	4.	3	測定	2]	— ŀ					• • •		•••			• • • •	• • •	• • • •		•••					• 20
	4.	4	<i>∩</i> −	・ド	ケー	マ			•••	••	•••	•••	• • •	• • •	•••	• • •	•••		•••		•••			• 20
5.	測	定	準備	•••					•••	•••	• • •	•••		•••					•••		• •	• • •		• 21
	5.	1	電池	電	圧の)確	恝••			• • •		•••			• • • •	• • •	• • • •		•••					•21
	5.	2	測定		- ŀ	の	準備	ī	•••	• •	• • •	•••		• • •	• • • •	• • •	• • • •		•••					•21
6.	測		定	•••					•••	•••	• • •	•••		•••					•••		• •	• • •		• 22
	6.	1	基本	操	作・	• • •	• • • •	• • • •	•••	•••	•••	•••	•••	•••	•••		•••	• • • •	•••	•••	•••	•••	• • •	• 22
			6.1.	1	測定	のり	台め	方・	•••	• •	• • •	•••		• • •	• • • •	• • •	• • • •		•••					• 22
			6.1.	2	測定	の	流れ		•••	• •	• • •	•••	•••	•••	•••	•••	•••		•••		• •	• • •		•24
			6.1.	3	測定	の	设定	をす	-3	•••	•••	•••	•••	•••	•••	•••	•••		•••		• •	• • •		• 31
			6.1.	4	グラ	フィ	を操	作す	-3	•••	•••	•••	•••	•••	•••	•••	•••	• • • •	•••	• • • •	••	•••		• 34
			6.1.	5	メニ	- - -	-12	っ	て	•••	•••	•••	•••	•••	•••	•••	•••		•••		• •	•••		• 38
			6.1.	6	フィ	ル	タモ	— ŀ	ドに	つ(17	.	•••	•••	••••	•••	••••		•••	• • • •	•••	•••		•42
			6.1.	7	保存	デー	-タ 	にこ)()	て	•••	•••	•••	•••	••••	•••	••••		•••		•••	•••		•43
			6.1.	8	時刻 <i>ー</i> ー	の副	没定		•••		•••	•••	•••	•••	••••	•••	••••		•••		•••	•••	••	•48
	~	~	6.1.	9 ·	テモ	+-	- ۲	122)(1	(•••	•••	•••	•••	••••	•••	••••		•••		•••	•••	••	•48
	ь. с	2	合理	紀	称彰	一			•••	•••	•••	•••		•••					•••		•••		••	• 49
	ο.	3	63	 1 [:]	て、別	北郭	もてて	·																· 50
			63	יי 2	则定	.∝∧ 絵	⊆ −只 里 • ·	. — 																.50
	6	4	р.		》 21111	定(╲ ┙	듒指	数)															• 51
	•		6.4.	1	成極	指装	数に	ここ	17															• 51
			6.4.	2	或極	指導	<u></u>	定方	5法	•••		•••						• • • •	•••					•51
			6.4.	3	測定	結	₹·	••••	•••	• • •		•••	•••						•••		•••	•••		• 54

6. 5 []]AT] DAR測定 (誘電吸収比) · · · · · · · · · · · · · · · · · · ·	• 55
6.5.1 誘電吸収比について ・・・・・・・・・・・・・・・・・・・・・	• 55
6.5.2 誘電吸収比測定方法 ••••••••••••••••••••••••••••••••	• 55
6.5.3 測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 58
6.6 🔟 🗓 DD 測定 (誘電体放電) • • • • • • • • • • • • • • • • • • •	• 59
6.6.1 誘電体放電について	• 59
6.6.2 誘電体放電測定方法 •••••••••••••••••••••••••••	• 59
6.6.3 測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•61
6.7 💽 SV測定 (ステップ電圧)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 62
6.7.1 ステップ電圧について ・・・・・・・・・・・・・・・・・・・・・・	• 62
6.7.2 測定設定項目 ・・・・・	• 62
6.7.3 測定結果 ・・・・・	• 64
6.8 測定画面・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 65
6.9 キャパシタンス測定・・・・・	• 68
6.9.1 測定画面 ······	•68
6. 10 11 11 電圧測定 · · · · · · · · · · · · · · · · · · ·	• 69
6.10.1 測定画面 ·····	• 69
6. 11 その他の機能・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•70
6.11.1 ガード端子の使用例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・	•70
6.11.2 バックライト機能 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•71
6.11.3 オートパワーオフ機能 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•71
7. 電池の充電および交換方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•72
7.1 電池の充電方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•72
7.2 電池の交換方法 ・・・・・・	•73
8. 通信機能/付属ソフトウェア ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•75
8.1 付属ソフトウェアのインストール手順 ・・・・・・・・・・・・・・・	•76
8. 2「KEW WINDOWS FOR KEW3128」の起動 ・・・・・・・・・・・・	• 80
9. アクセサリ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 81
9.1 ラインプローブ用先端金具の説明及び交換方法 ・・・・・・	• 81
10. 製品の廃棄について ・・・・・	• 82
	. 02
	- 03

保証書

1. 使用上のご注意(安全に関するご注意)

○本製品はIEC 61010:電子測定装置に関する安全規格に準拠して、設計・製造の上、検査合格をした最良の状態にて出荷されています。この取扱説明書には、使用される方の危険をさけるための事項及び本製品を損傷させずに長期間良好な状態で使用していただくための事柄が書かれていますので、お使いになる前に必ずこの取扱説明書をお読みください。

▲ 警告

- ●本製品は危険を伴う高電圧を出力しますので、使用する前に必ずこの取扱 説明書をよく読んで理解してください。
- この取扱説明書は手近な所に大切に保管し、必要なときにいつでも取り出 せるようにしてください。
- 取扱説明書で指定した製品本来の使用方法を守ってください。
- 製品本体と測定コードの測定カテゴリ表示が違っている場合、カテゴリ表示の低い方が優先されますので低い方の測定環境でご使用願います。

●本書の安全に関する指示に対しては、指示内容を理解の上、必ず守ってください。
 指示に従わないと、怪我や事故の恐れがあります。危険及び警告、注意に反した使用により生じた事故や損傷については、弊社として責任と保証を

負いかねます。

- ○本製品に表示の▲マークは、安全に使用するため取扱説明書を読む必要性を表しています。なおこの▲マークには次の3種類がありますのでそれぞれの内容に注意してお読みください。
 - △ **危険**:この表示を無視して誤った取扱いをすると、人が死亡または重傷 を負う危険性が高い内容を示しています。
 - ▲ **警告**:この表示を無視して誤った取扱いをすると、人が死亡または重傷 を負う可能性が想定される内容を表示しています。
 - ▲ 注意:この表示を無視して誤った取扱いをすると、人が傷害を負う可能 性が想定される内容および物的損害の発生が想定される内容を示 しています。

▲ 危険

- ●本製品使用時には必ず高圧絶縁手袋を着用してください。
- 本製品は、対地電圧 AC/DC600Vより高い電位のある回路では、絶対に 使用しないでください。
- ●引火性ガスのある場所で測定しないでください。火花が出て爆発する危険があります。
- 本製品や手が濡れている状態では、絶対に使用しないでください。
- ●電圧測定時に測定コードの先端金具で電源ラインを短絡しないように注意してください。人身事故の危険があります。
- 測定の際には、測定範囲を超える入力を加えないでください。
- 測定コードを接続の際には測定ボタンを押さないでください。
- 測定中は絶対に電池蓋を開けないでください。
- 絶縁抵抗測定中及び測定終了直後には、被測定回路にさわらないでください。試験電圧で感電の危険があります。
- ●コードや端子周辺で絶縁劣化につながる汚染や炭化が見られるときは、直ちに使用を中止してください。
- 絶縁抵抗測定中は、故意に測定コードの短絡・開放を繰り返さないでください。製品の誤動作により、意図しない測定の中断やLCDの消灯が発生する場合があります。短絡・開放時にコード先端で気中放電が発生しますが、過度な放電は製品の性能を劣化させますので注意ください。
- ●指定した測定方法および条件以外で使用した場合、本体の保護機能が正常に動作せず本器を破損したり感電等の重大な事故を引き起こす可能性があります。
- 測定の際は指先等が、保護用フィンガガードを越えることのないよう充分 注意してください。

▲ 警告

- ●本製品を使用しているうちに、本体や測定コードに亀裂が生じたり金属部分が露出したときは直ちに使用を中止してください。
- 被測定物に測定コードを接続したままレンジスイッチを切り換えないでく ださい。
- ●本製品の分解、改造、代用部品の取り付けはしないでください。修理・調整の必要な場合は、弊社または販売店宛にお送りください。
- 本製品が濡れているときには、電池交換を行わないでください。
- 測定コードを使用するときは、プラグを根元まで端子に差し込んでください。
- 電池交換のため電池蓋を開けるときは、レンジスイッチをOFFにしてください。
- 測定コードのコード内部から金属部分または外装被覆と異なる色が露出したときは、直ちに使用を中止してください。

⚠ 注意

- ●測定を始める前に、レンジスイッチを必要な位置にセットしたことを確認してください。
- ●使用後は必ずレンジスイッチをOFFにし、測定コードをはずしてください。 また長期間ご使用にならない場合は、電池を取りはずした状態で保管して ください。電池の取りはずしかたは電池の充電および交換方法(⇒P.71) を参照ください。
- ●高温多湿、結露するような場所及び直射日光のあたる場所に本製品を放置 しないでください。
- クリーニングには研磨剤や溶剤を使用しないで中性洗剤か水に浸した布を 使ってください。
- 本製品が濡れているときは、乾燥後保管してください。
- ●本製品の輸送を行う際は、本体より電池を取り出し、輸送中に破損しないように十分な梱包を施して、輸送を行ってください。
- ●本製品は防じん・防水構造となっていません。ほこりの多い場所及び水の かかる恐れのある場所では使用しないでください。故障の原因となります。

安全記号

Â	感電の危険がある部分を示します。
	二重絶縁または強化絶縁で保護されている機器を示します。
	直流(DC)を示します。
\sim	交流(AC)を示します。
Ţ	接地端子を示します。
	人体及び機器を保護するため、取扱説明書を参照する必要がある場 合に付いています。
	本製品は、WEEE指令(2002/96/EC)マーキング要求に準拠しています。 この電気電子製品を一般家庭廃棄物として廃棄してはならないことを示 します。 廃棄する際には、 お住いの自治体のルールに従ってください。

●測定カテゴリ

安全規格IEC61010では測定器の使用場所についての安全レベルを測定カテ ゴリろいう言葉で規定し、以下のようにO~CAT IVの分類をしています。こ の数値が大きいほど過渡的なインパルスが大きい環境であることを意味しま す。CAT IIIで設計された測定器はCAT IIで設計されたものより高いインパル スに耐えることができます。

- O :主電源に直接接続されていない他の回路
- CAT II :コンセントに接続する電源コード付機器の電気回路
- CAT III : 直接配電盤から電気を取り込む機器の1次側および分岐部か らコンセントまでの電路
- CAT IV : 引込み線から電力量計および1次過電流保護装置(配電盤) までの電路

2. 特 長

KEW3128は最大35TΩまで測定可能な高圧用デジタル絶縁抵抗計です。 500V, 1000V, 2500V, 5000V, 10000V, 12000Vの6つの固定レンジで測定 が可能で、それぞれのレンジで設定電圧を微調整することができます。 測定したデータは内部メモリに保存が可能であり、また専用のUSB接続コー ドを使うと、メモリデータおよびリアルタイムで測定中のデータをPCに転送 することができます。

● 安全設計

安全規格IEC 61010-1 CAT IV 600Vに準拠した安全設計です。

● 絶縁抵抗測定

最大試験電圧12kV、最大抵抗值35TΩ、最大短絡電流5mA

● 各種絶縁診断機能

成極指数(PI)、誘電吸収比(DAR)、誘電体放電(DD)の値を自動表示し、 ステップ電圧テスト(SV)、漏れ電流、キャパシタンスの測定が可能です。 ※各種絶縁診断機能につきましては、**各種絶縁診断(⇒P.49)**を参照くだ さい。

● 測定データの保存

内部メモリに最大32ファイル保存可能です。 また、プリントスクリーン機能で画面データの保存ができます。

2つの電源方式

電源は鉛蓄電池(12V 5Ah)を使用します。さらに本製品に鉛蓄電池を入 れたままでの充電が可能です。電池内蔵状態でAC電源で駆動中に停電が 発生した場合、電源の供給が自動的に電池に切り換わります。

● 大画面表示

5.7型(320×240dots)の見やすい大画面表示です。

グラフ表示

画面切り換えで測定中の絶縁抵抗値や漏れ電流値の変化が見られるグラフ が表示できます。

※90分を超える測定の場合(IR測定のみ可能)には、90分以上の部分はグ ラフ表示されません。

● アプリケーション

専用のUSBアダプタの使用により、内部メモリデータやリアルタイムで測 定中のデータをパソコンに転送可能です。付属のアプリケーションソフト を使用することで、パソコンから本体の設定が簡単に行えます。また、保 存したデータを解析することが可能です。

● 活線警告

ブザー、画面表示による活線警告表示機能付きです。

● オートディスチャージ機能

容量性の負荷などの絶縁抵抗を測定したときに、充電された電荷を測定後 自動的に放電します。また、放電の状態は電圧モニターで確認できます。

● バックライト機能

暗い場所や夜間作業に便利なバックライト付きです。

● オートパワーオフ機能

電源の切り忘れなどによる無駄な電池の消耗を防ぐため、約10分間測定ボ タンなどの操作が無かった場合自動的に電源をオフにします。

● フィルタ機能

3種類のフィルタ機能を使用することによって、測定表示値のフラツキを 軽減することができます。

※フィルタ機能につきましては、フィルタモードについて (⇒P.41) を参照ください。

3. 仕 様

適応規格	
IEC61010-1	CAT IV 600V 汚染度2
IEC61010-2-030	
IEC61010-031	手持型プローブアセンブリ
	M-7224A CAT IV 600V
	M-7225A CAT IV 600V
	M-7226A CAT IV 600V(ただし、先端金具8029使用
	時のみ)
IEC61326-1	計測・制御および研究室用電気機器に対するEMC規格
IEC60529	IP64(ケースを閉じた状態)
CISPR22, 24	EMC
IEC63000	RoHS指令

● 測定範囲及び確度(温度湿度 23±5℃ 45~75% RHにおいて)

【絶縁抵抗計】

定格電圧		500V	1000V	2500V	5000V	10000V	12000V
最大測定値		500GΩ	1.00TΩ	2.50 ΤΩ	5.00TΩ	35.0 ΤΩ	35.0 ΤΩ
		400k∼50GΩ ±5%rdg±3dgt	800k~100GΩ ±5%rdg±3dgt	2M~250GΩ ±5%rdg±3dgt	4M∼500GΩ ±5%rdg±3dgt	8M∼1TΩ ±5%rdg±3dgt	8M~1TΩ ±5%rdg±3dgt
確	度	50.1G∼500GΩ ±20%rdg	101G~1TΩ ±20%rdg	251G~2.5TΩ ±20%rdg	501G∼5TΩ ±20%rdg	1.01T∼10TΩ ±20%rdg	1.01T∼10TΩ ±20%rdg
		※250V以下の 設定では確 度保証外				10.1T~35TΩ 表示のみ 確度保証外	10.1T~35TΩ 表示のみ 確度保証外
表示範囲		400k~999k 1.00M~9.99M 10.0M~99.9M 100G~9.99G 10.0G~99.9G 10.0G~600G <400kΩ	800k~999k 1.00M~9.99M 10.0M~99.9M 100G~9.99G 10.0G~999G 100G~999G 1.00T~1.20T <800kΩ	2.00M~9.99M 10.0M~99.9M 100G~9999M 1.00G~99.9G 10.0G~9999G 1.00T~3.00T <2.00MΩ	4.00M~9.99M 10.0M~99.9M 100G~999M 1.00G~9.99G 10.0G~999G 1.00T~6.00T <4.00MΩ	8.00M~9.99M 10.0M~99.9M 100G~9999M 1.00G~99.9G 100G~9999G 1.00T~9.99T 10.0T~35.0T <8.00MΩ	8.00M~9.99M 10.0M~99.9M 100G~9999M 1.00G~99.9G 10.0G~99.9G 1.00T~9.99T 10.0T~9.99T 10.0T~35.0T <8.00MΩ
表示	上限	<1.8mA	<1.05MA	<1.65MA	<1.05MA	<0.263mA	<0.315mA
短絡電流		- 0000 32	1.20132	最大5	5.0mA	00.0132	00.0132
出力電济		0.5MΩ負荷にて 1mA以上 1.2mA以下 ※ただし500V 以上	1MΩ負荷にて 1mA以上 1.2mA以下	2.5MΩ負荷にて 1mA以上 1.2mA以下	5MΩ負荷にて 1mA以上 1.2mA以下	10MΩ負荷にて 0.15mA以上 0.25mA以下	12MΩ負荷にて 0.15mA以上 0.25mA以下

※測定コード短絡時には範囲外表示『下限』、測定コード開放(又はオープン) 時には範囲外表示『上限』を表示します。

※PI, DAR, SV測定時においても上記の範囲外表示となります。

[※]PI, DAR, SV測定時において小さく"OL"と表示された場合上記の範囲外表示 を表しています。

【出力電圧】

定格電圧	500V	1000V	2500V	5000V	10000V	12000V
モニタ確度	±10%rdg±20V	±10%rdg±20V	±10%rdg±20V	±10%rdg±20V	±10%rdg±20V	±10%rdg±20V
出力確度	0~+20%	0~+10%	0~+10%	0~+10%	-5~+5%	-5~+5%
乳中筋囲	50~600V	610~1200V	1225~3000V	3050~6000V	6100~10000V	10100~12000V
	(5V刻み)	(10V刻み)	(25V刻み)	(50V刻み)	(100V刻み)	(100V刻み)

外部から交流電圧が印加された場合の表示値は、正しい値ではないのでご注 意してください。

【抵抗-出力電圧特性グラフ】

500V、1000V、2500V、5000Vレンジでは定格電流は最大1mA以上となります。 10kV、12kVレンジの定格電流は最大0.5mAとなります。 出力電圧と測定抵抗との関係を上グラフに示します。

【電圧計】

	レ :	ン	ジ	Voltag	e Test		
्मा	÷	绗	Ē	直流電圧	交流電圧		
/只]	Æ	甲比	四	±30~±600V	$30\sim 600V$ (50/60Hz)		
確			度	±2%rdg±3dgt			

【周波数】

	レ	ン	ジ	Voltage Test
測	定	範	〕 囲	$45.0 \sim 65.0$ Hz
確			度	±0.2Hz

【電流計】

0.00nA ~ 2.40mA 絶 測 定 範 囲 最小分解能 0.01nA 囲 (抵抗と電圧からの計算値) ^囲	絶縁抵抗の有効測定範 囲による
---	--------------------

※出力電流は最大5mAを流せますが、抵抗測定範囲の下限で流れる電流は10 ページの表【絶縁抵抗計】の通りです。

抵抗測定範囲の下限より低い抵抗を測定した場合に測定電流が2.4mAより 大きくなることがありますが、その場合の表示は ">2.40mA" となります。

【容量計】

レ	ン	ジ	500V \sim 5000Vレンジ	10000/12000Vレンジ
τæ		臣	5.0nF \sim 50.0 μ F	40.0nF \sim 1.0 μ F
堆		反	±5%rd	g±5dgt

※10000V/12000Vレンジにおいて0.5µF以上の容量測定を短時間に繰り返 しおこなわないでください。機器の破損につながります。5回以内/時間を 目安としてください。

※10000V/12000Vレンジにおいて『Noise Error』と表示がでて、容量測定でき ない場合があります。このときは低い電圧レンジを選択して再度測定下さい。

【計算値】

PI,DAR,DD

測定モード			*	PI	DAR	DD
表示範囲		囲	$0.00\sim 999$	$0.00\sim 999$	$0.00\sim 999$	
計算誤差		差	±2dgt	±2dgt	±2dgt	

● 電磁波対応性(IEC61000-4-3)

無線周波電磁界=10V/m:規定の確度の20倍

● 動作方式	二重積分方式
● 表示	320×240ドット、5.7型
	モノクロ液晶
● 電池電圧警告	4 段階バッテリマーク表示
● 応答時間	±5%の確度の範囲…約30秒
	±20%の確度の範囲…約60秒
	(ただし、出力電圧が低く設定されるにした
	がって、応答時間は遅くなります。)
● オートパワーオフ機能	スイッチ操作後
	約10分でオートパワーオフ状態
● 使用環境条件	高度2000m以下
● 精度保証温湿度範囲	23℃±5℃ 相対湿度85%以下
	(結露しないこと)
● 使用温湿度範囲	-10℃~ 50℃ 相対湿度85%以下
	(外部電源使用時・結露しないこと)
	0℃~40℃ 相対湿度85%以下
	(バッテリ使用時・結露しないこと)
● 保存温湿度範囲	-20℃~60℃ 相対湿度75%以下
	(結露しないこと)
● 過負荷保護	AC720V/10秒間
● 耐電圧	ライン端子と外箱間でAC8770V
	測定端子と外箱間でAC6880V
	電源コネクタと外箱間でAC2330V
	/それぞれ5秒間(50/60Hz)
● 絶縁抵抗	電気回路と外箱間で1000MΩ以上/
	DC1000 V
● 外形寸法	330 (L) ×410 (W) ×180 (D) mm
	(本体とハードケース一体型)
●重量	約9kg(電池含む)
	(本体とハードケース一体型)
●電源	充電式電池
	(鉛蓄電池PXL-12050:12V 5Ah)
	AC電源(100V ~ 240V,50/60Hz)

● 消費電流(電池電圧:12V時の代表値)

	レ	ン	ジ		500V	1000V
出	力	短	絡	時	2650mA	2300mA
定	格電	流	出 力	時	1350mA/0.5MΩ	1500mA/1MΩ
出	力	開	放	時	210mA	220mA

	\checkmark	ン	ジ		2500V	5000V
出	力	短	絡	時	1700mA	1600mA
定	格電	流	出 力	時	1650mA/2.5MΩ	2000mA/5MΩ
出	力	開	放	時	280mA	380mA

	\checkmark	ン	ジ		10000V	12000V
出	力	短	絡	時	1550mA	1550mA
定	格電	流	出 力	時	500mA/10MΩ	540mA/12MΩ
出	力	開	放	時	570mA	650mA

	\checkmark	ン	ジ		Voltage Test
電	圧	測	定	時	210mA

	レン	ジ	全レンジ
待	機	時	210mA
バックライト点灯時		ト点灯時	80mA増加

• 連続測定時間

制限無し(IR測定モード)

※ただし、記録データ/グラフ表示は90分 まで

最大90分(SV測定モード)

最大60分(PI/DAR/DD測定モード:タイマー 設定値上限)

● 定格電流が維持できる範囲での最大消費電流と電池による連続使用可能時間

条件	消費電流	連続使用可能時間
500V / 300kΩ		
1000V / 600kΩ		
2500V / 2.4MΩ	2100m4115	約つ時間
5000V / 4.8MΩ	Z100IIIA以下	ホリエルナ旧」
10000V / 20MΩ		
12000V / 24MΩ		

※定格電流が出力できない小さい抵抗を測定した場合は、消費電流が上記 表の値より大きくなる場合があります。

※上記表中の「連続使用可能時間」は、電池電圧が満充電状態から電池下 限値となるまでの合計時間を記載しています。

※購入直後は鉛蓄電池の自己放電により電池電圧が低下し、上記の使用時間を満足しない可能性があります。「7.1電池の充電方法」(⇒P.72)を参照し、充電を行ってから使用することをお勧めします。

● 付属品

ラインプローブ (MODEL7226A)
 ワニグチタイプラインプローブ (MODEL7227A)
 アースコード (MODEL7224A)
 ガードコード (MODEL7225A)
 通信用アダプタ (MODEL8212USB)
 PC用ソフトウェア
 ストレートタイプ先端金具 (MODEL8029)
 電源コード (MODEL7169)
 取扱説明書

4. 各部の名称

4.1 正面図

4. 各部の名称

キー操作部

キー名称	動作
プリントスクリーン バックライト キー	短押し: LCDのバックライトを点灯/消灯させます。 長押し (1秒以上): LCDに表示中の画面をBMP(ビッ トマップ) ファイルとして保存します。
ESC +-	処理の取消や前の画面に戻ります。
ENTER +-	処理の確定や次の場面に移動します。
UP/DOWN +-	選択カーソルの移動や設定値の変更を行います。
測定 ボタン	測定を行います。
レンジスイッチ	電源のON/OFFや測定レンジの変更を行います。
シャトルスイッチ	選択カーソルの移動や設定値の変更を行います。

コネクタ部

4.2 側面部

4.3 測定コード

ラインプローブとワニグチタイプラインプローブは、どちらかをライン端子に 挿入して使用します。使用用途に応じてそれぞれ使い分けてください。 保護用フィンガガード:操作中の感電事故を防ぐため、最低限必要な沿面及び

空間距離を確保するための目印です。

△ 警告 製品本体と測定コードの測定カテゴリ表示が違っている場合、カテゴリ表示の低い方が優先されますので低い方の測定環境でご使用願います。 CAT IVの環境で測定される場合はモールド付先端金具8029をご使用願います。

4.4 ハードケース

密閉状態のケース内部の気圧と外 部空気圧を均一にし、ケースの 開閉を容易にするための調整弁で す。無理に回したり、取りはずし たりしないでください。

5. 測定準備

5.1 **電池電圧の確認**

電源コードを電源コネクタに接続しない状態で、レンジスイッチをOFF以外 の位置にします。

LCD右上のバッテリマークが1つ点灯の状態 **し** にあれば、電池容量が残 りわずかになっています。継続して測定を行う場合は、充電を行うか新しい 電池と交換してください。この状態にあっても確度には影響なく動作します。 また、バッテリマークが全て消灯している **し** 場合は、電源が動作電圧下 限値以下となっているため、確度保証外となります。<u>測定ボタンを押下して</u> も測定を開始できませんので注意してください。

電池の充電方法、交換方法については**電池の充電および交換方法(⇒P.72)**

を参照してください。

5.2 測定コードの準備

測定コードを本体のコネクタ端子に確実に差し込みます。

ラインプローブ(赤)またはワニグチタイプラインプローブ(赤)をライン 端子に、アースコード(黒)をアース端子に、ガードコード(緑)をガード 端子に差し込みます。(ガードを取る必要のないときは、ガードコードは接 続しなくてもかまいません。)

ガード端子の使用方法については**ガード端子の使用例(⇒P.70)**を参照して ください。

▲ 危険

- レンジスイッチがOFF以外の位置にある場合は、測定ボタンを押すと測定 コードに高電圧が発生し、手でさわると感電の危険があります。
- ライン端子にアースコード(黒),ガードコード(緑)を差し込まないで ください。

[1 使用上のご注意(安全に関するご注意)](⇒P.4)をよく読んでください。

6. 測 定

6.1 基本操作

6.1.1 測定の始め方

初期表示画面

レンジスイッチをOFF以外の位置にすると、電源が入ります。OFFの位置に すると電源が切れます。

電源を入れると、以下のように画面が表示されます。

モデル名/バージョンに続いて、弊社のロゴマークが表示されます。

※ENTERキーを押下するとオープニング画面をスキップします。 購入して初めての起動の場合は、モード選択の画面が表示されます。

1度でも測定モードを選択していれば、前回の測定モードで測定待機状態に なります。

測定モードの選択

測定中でない時に**ESCキー**を長押し(1秒以上)すると、モード選択画面を 表示します。

モード選択画面にて選択できる測定モードについては、各種絶縁診断 (⇒P.49)を参照してください。

UP/DOWNキー、シャトルスイッチで選 択カーソルを移動し、ENTERキーで測定 モードを確定します。画面下部には、各 測定モードの設定〜測定までの流れが表 示されます。

また、メニューにより、直接、測定モー ドを変更することもできます。

(⇒P.38 メニューについて)

6.1.2 測定の流れ

絶縁抵抗の測定

- 被測定回路に印加しても良い電圧を確認し、レンジスイッチを希望の電圧 レンジにセットします。
- モード選択画面でIR (Insulation Resistance)を選択し、ENTERキーで 決定します。

1度でも測定モードを選択していれば、前回の測定モードで測定待機状態 になります。

③ 電圧値の設定をおこない、ENTERキーで決定します。

④ 設定確認画面が表示され、希望する設定値になっていればENTERキーで 決定します。

	2008/05/07 13:13:14
Ready? Voltage :	12000V
Vort. > Ready Meas	

⑤ 設定が完了すると、測定待機状態になります。

⑥ アースコード(黒)を被測定回路の接地端子に接続します。

⑦ ラインプローブ(赤)の先端を被測定回路にあて、測定ボタンを押します。 測定中にブザーが断続して鳴ります。 絶縁抵抗の測定を連続して行う場合は、測定ボタンを押しながら右に回し てください。測定ボタンがロックされ、連続測定ができます。 電圧レンジを12kVに設定した場合は、10kVより大きい危険な電圧を出力 するため、測定中のブザー音はその他のレンジとは異なります。

⑨ 測定ボタンから手をはなすと、測定を終了して測定結果が表示されます。 測定ボタンをロックしている場合は、左に回して元の位置に戻してロック を解除してください。

① 本製品には放電機能(オートディスチャージ機能)が付いています。測定 終了後、測定コードの接続はそのままの状態で、測定ボタンから手をはな し被測定物に充電された電荷を放電させてください。このとき、電圧モニ ターが"0V"になることを確認してください。

※放電の途中で被測定物から測定コードの接続がはなれた場合は、はなれ る前と同じ接続で再度測定コードを被測定物に接続して放電をおこなっ てください。再度接続する際は、測定コードと被測定物間で気中放電が 長時間発生しないように接続してください。また、この場合は本製品内 部の放電回路が動作していないため、通常の放電よりも時間を要します。

① レンジスイッチをOFFにし、測定コードを被測定物からはずしてください。

続けて測定をおこなう場合、⑩終了後すぐに測定ボタンを押しても測定を 開始しない場合があります。その時は、測定ボタンから手を離した状態で 数秒待ち、再度測定ボタンを押してください。 各測定モードの画面表示内容については、■FB IR測定(⇒P.50)以降を 参照してください。

▲ 危険

- ●測定が終了してすぐに被測定回路にさわると、充電されている電荷で感電 することがあります。
- ●測定コードはそのままつないでおき、放電が完了するまでは被測定回路に さわらないように充分注意してください。

● 測定前に高圧検電器で被測定回路に電荷がないことを確認してください。

- 高圧絶縁手袋を着用してください。
- ●レンジスイッチが絶縁抵抗の位置にある場合は、測定ボタンを押している間、測定コードの先端及び被測定回路に高電圧が発生しています。触れると感電しますので充分注意してください。
- 電池蓋をはずした状態で絶対に測定しないでください。
- 雷が発生している場合は、測定を行わないでください。
- 測定の際は指先等が、保護用フィンガガードを越えることのないよう充分注意してください。

▲ 危険

● 活線警告及びブザーが鳴動していても160∨以下の場合、測定ボタンを押 すことにより測定を開始します。

被測定回路が活線状態でも測定可能となるため、被測定物の停電の確認を 充分におこなってください。また、被測定回路が充電されたまま測定を開 始する可能性がありますので、感電の危険に充分注意ください。

電気機器や電路の絶縁状態を調べるために、本製品で絶縁抵抗を測定します。 測定の際には、被測定物に印加しても良い電圧を確認してください。

電池駆動で測定中、電池容量がわずかになり測定精度を保証できなくなった 場合に自動的に測定を終了します。測定終了後はオートディスチャージをお こない、下図の警告画面を表示しLCDが消灯します。

注記:

- 被測定物によっては絶縁抵抗値の不安定なものがあり、指示が安定しない 場合があります。
- 絶縁抵抗測定中に本製品から発振音が出ることがありますが、故障ではありません。
- 被測定物が容量性負荷の場合、測定に時間がかかることがあります。
- ○測定終了直後に測定ボタンを押下しても測定をおこなわない場合があります。その際は測定ボタンを元に戻し、数秒後に再度測定ボタンを押下してください。
- 絶縁抵抗計において測定端子電圧は、アース端子からはプラス極が、ライン端子からはマイナス極が出力されています。
 測定の際には、アースコード側を接地端子(大地)側に接続します。従来より、大地に対する絶縁測定や、被測定物の一端が接地されているときには、大地側にプラス極を接続する方が抵抗値が小さく出るのが普通であり、絶縁不良の検知には最適であるとされています。
- 測定コードを延長して使用しないでください。延長して使用した場合には、 測定精度及び安全上問題が発生します。
- ラインプローブの下図Aの部分は高抵抗(1TΩ以上)を測定する場合、測 定対象以外の物に接触させないでください。やむを得ず接触させる場合は、 テフロン、発泡スチロールなどの絶縁抵抗の高い材料を間に入れてください。

- ○測定コードに被測定物を接続しない状態で測定した場合、オーバー表示(例)
 「>35.0TΩ」(10kV, 12kVレンジ)しない場合があります。特に多湿の環境下の場合、このような症状があらわれます。これは、高電圧印加による 被測定物以外の意図していない箇所での漏れ電流によるものです。
- 絶縁抵抗測定中に測定コードでライン−アース(ガード)間の短絡・開放 を繰り返すと、強電界の変動の影響や容量成分に蓄積したエネルギー放電時 のノイズの影響で正常に測定ができない場合があります。そのような場合は

- LCDに "Noise Error" と表示され、測定を中止します。特に測定コードを LCD上に置いた場合、この現象(LCDの表示が消えることもある)が発生し やすい傾向にありますので、測定コードはLCD上に置かないようにしてくだ さい。
- LCDが消灯した場合は一度レンジスイッチをOFFにし、再度電源を希望の 電圧レンジにセットしてください。
- ○低い抵抗(定格測定電流よりも大きな電流が出力する場合)を長時間測定した場合、被測定物や本製品が大きなエネルギーを消費し発熱等の危険な状態となる可能性があります。そのため低い抵抗を測定した場合は、出力電圧を自動で低減する機能が動作します。また、低い抵抗を長時間測定した場合にはLCDに"Stop measuring"と表示され、測定が中止されます。

"Stop measuring" と表示され測定が中止された場合は、本製品内部の温度 が上昇していますので、測定を続けておこなう場合は30分以上待ってから 測定をおこなってください。

○電圧出力中にラインプローブとアースコードをショートしても、電圧モニ タは0Vではなく数10V~200V程度を表示することがあります。これは、本 製品の測定回路に直列に入っている抵抗にかかる電圧を含めて表示している ためです。

停電の確認(電圧の測定)

▲ 危険

- 感電の危険をさけるため、対地電圧 AC/DC600Vより高い電位のある回 路では、絶対に使用しないでください。線間電圧が600V以下でも対地電 圧が600Vより高いときは使用しないでください。
- ●大電流の流せる電力ライン等の電圧を測定する場合には、必ずブレーカの二次側にて測定を行ってください。人身事故の危険があります。
- ●電圧測定時に、測定コードの先端金具で電源ラインを短絡しないように 注意してください。人身事故の危険があります。
- 電池蓋をはずした状態で絶対に測定しないでください。
- ●測定の際は指先等が、保護用フィンガガードを越えることのないよう充分注意してください。

モード選択画面でVtest (Voltage)を選択することで電圧の測定ができます (⇒P.22 測定モードの選択)。測定の際、測定ボタンを押下する必要はありま せん。

本製品は交流・直流自動判別回路を使用していますので、直流の電圧測定も 可能です。

直流電圧測定において、ラインプローブ(赤)にプラス電圧入力時にプラス 表示をします。

- 被測定回路の遮断機は必ずOFFに してください。
- アースコード(黒)を披測定回路の 接地側に、ラインプローブ(赤)を ライン側に接続します。
- ③ 電圧が"Lo V"表示であることを確認してください。"Lo V"表示でない場合は、被測定回路に30V以上の電圧が発生しています。もう一度被測定回路の遮断機がOFFになっているか確認してください。

画面の表示内容については、 VIBI 電圧測定(⇒P.69)を参照してください。

6.1.3 測定の設定をする

測定モード選択画面でのモードの決定後に測定の設定を行います。

測定の設定は、1項目ずつ画面に表示され、設定を行います。

UP/DOWNキー、シャトルスイッチで設 定値を変更し、ENTERキーで次の設定 項目に移ります。ESCキーを押下すると、 1つ前の設定項目へ戻ることができます。 すべての設定が完了すると、設定した項 目がすべて表示されます。設定の確認画 面でENTERキーを押下すると、測定待 機状態になります。

画面下部には、測定までの流れが表示されており、現在表示されている設定 項目が点滅します。

また、ENTERメニューにより、測定設定画面に遷移することもできます。 (⇒**P.38 メニューについて**)

出力電圧の設定

レンジスイッチで設定した電圧値から、出力する電圧を微調整することがで きます。

測定中(電圧出力中)は設定電圧を変更することはできません。

各測定レンジの設定電圧のステップ値と設定可能範囲は以下のとおりです。

レンジ	ステップ	最小値	最大値
500V	5V	50V	600V
1000V	10V	610V	1200V
2500V	25V	1225V	3000V
5000V	50V	3050V	6000V
10000V	100V	6100V	10000V
12000V	100V	10100V	12000V

測定時間の設定

PI/DAR測定のTIME1,2、DD測定のTIME、SV測定のステップ時間を変更することができます。

設定時間のステップ値は以下のとおりです。

設定時間	ステップ
15秒 – 1分	1秒
1分 – 10分	30秒
10分-60分	1分

各測定モードの設定時間下限値は15秒です。

6.1.4 グラフを操作する

グラフ表示画面で、ENTERメニュー (⇒P.37) より → 時間軸ZOOM、または ① 測定値軸ZOOMを選択すると、グラフの拡大縮小、およびスクロールが可能なグラフZOOMモードに切り換わります。

グラフZOOMモード中に、**ESCキー**を短押し(1秒以内)するとグラフZOOM モードを終了し、通常のグラフ表示画面に戻ります。このときグラフZOOM モード中に操作した、拡大縮小、およびスクロール状態は保持されます。

グラフを拡大/縮小する

UPキーでグラフの拡大、DOWNキーでグラフの縮小ができます。

ただし、SV測定時の電圧値軸は固定になります。

ZOOM対象軸を切り換える

ENTERキーを短押し(1秒以内)すると、測定値軸と時間軸で交互に操作対象軸が切り換わります。

● 測定値軸のスクロールバー

● 時間軸のスクロールバー

グラフをスクロールする

シャトルスイッチの操作でグラフのスクロールができます。

ただし、SV測定時の電圧値軸は固定になります。

グラフを切り換える

ENTERキーを長押し(1秒以上)すると、電流値グラフと抵抗値グラフで交 互に表示グラフが切り換わります。

フルスケールで表示する

ESCキーを長押し(1秒以上)するとフルスケールでグラフを表示します。 また、一度グラフZOOMモードを終了し、ENTERメニュー(⇒P.38)より **2 フルスケール表示**を選択することでも、フルスケールでグラフを表示す ることができます。

6.1.5 メニューについて

画面上部中央に Menn が表示されている時は、メニューが使用可能です。 Menn が表示されている状態で、ENTERキーを押下すると以下のようなメ ニューウィンドウが表示されます。

UP/DOWNキー、シャトルスイッチで選択カー ソルを移動し、ENTERキーで選択を確定します。 メニュー表示中にESCキーを押下すると、メ ニューウィンドウを閉じます。

右端に か表示されている項目は、サブメ ニューが存在しますのでENTERキーを押下する ことでサブメニューを表示します。サブメニュー 表示中にESCキーを短押し(1秒以内)すると、 直前のメニュー表示に戻ります。ESCキーを長 押し(1秒以上)すると、メニューウィンドウを 閉じます。 各メニュー項目の機能は以下のとおりです。

アイコン	名称	機能
	ビュー切り換え	表示している画面を切り換えます。 (⇒P.40 ビュー切り換え)
Q	グラフZOOM	グラフZOOMモードを指定します。 (⇒P.40 グラフZOOM)
Fit	フィルタ	フィルタモードを設定します。 (⇒P.41 フィルタ)
Rec	測定記録	測定の連続記録を設定します。
Save	測定値保存	測定結果のみを保存します。
Mem	内部メモリ	内部メモリに保存されたデータの表示や 削除を行います。 (⇒P.43 保存データについて)
Set	測定設定	測定設定画面へ移動します。
Node	測定モード変更	測定モードを変更します。
	その他機能	時刻設定などを行います。 (⇒P.41 その他機能)
Exit	EXIT	測定結果表示から、測定待機状態に移行 します。

ビュー切り換え

測定値ビュー/電流値グラフビュー/抵抗値グラフビューの切り換えを行います。

各サブメニュー項目の機能は以下のとおりです。

アイコン	名称	機能
	測定値	測定値ビューを表示します。
A	電流値グラフ	電流値グラフビューを表示します。
<u></u>	抵抗値グラフ	抵抗値グラフビューを表示します。

グラフZOOM

グラフZOOMモードへの移行 (⇒P.34 グラフを操作)、およびグラフのフル スケール表示を行います。

各サブメニュー項目の機能は以下のとおりです。

アイコン	名 称	機能
* *	時間軸ZOOM	時間軸(X軸)を対象として、グラフ ZOOMモードへ移行します。
	測定值軸ZOOM	測定値軸(Y軸)を対象として、グラフ ZOOMモードへ移行します。
	フルスケール表示	グラフをフルスケール表示にします。

フィルタ

フィルタのON/OFFを行います (⇒**P.41 フィルタモードについて)**。 各サブメニュー項目の機能は以下のとおりです。

アイコン	名称	機能
×	フィルタOFF	測定値ビューを表示します。
F1	フィルタ1	フィルタ1を有効にします。
F2	フィルタ2	フィルタ2を有効にします。
F3	フィルタ3	フィルタ3を有効にします。

その他機能

本体設定を行います。

各サブメニュー項目の機能は以下のとおりです。

アイコン	名称	機能
12:00	時刻設定	KEW3128本体の時刻設定を行います。 (⇒ P.48 時刻の設定)
PS	プリント スクリーン	LCDに表示中の画面をBMP(ビットマップ ファイルとして保存します。 プリントスクリーン /バックライト キー: 押し(1秒以上)と同じ機能です。 (⇒P.18キー操作部)
Cemo	デモモード	デモモードに切り替わります。 (⇒P.48デモモードについて)

6.1.6 フィルタモードについて

KEW3128は3種類のフィルタ機能を搭載しています。

フィルタモードは高抵抗測定時に外部の影響により表示値にフラツキが発生した場合に、フラツキを軽減するために使用します。

フィルタモードは数値が大きくなるに従い、効果が大きくなります。

抵抗の突発的な変化を確認する場合は、フィルタモードはオフにして使用してください。

名称	機	能
フィルタOFF	フィルタ無効 (初期設定)	
フィルタ1	ローパスフィルタ(fc = 0.3Hz)	
フィルタ2	移動平均(5個のデータの平均)	
フィルタ3	ローパスフィルタ + 移動平均	

各フィルタの機能については以下のとおりです。

フィルタ1:測定物の周辺に高電界が発生している場合、商用周波数 (50/60Hz)以上の交流成分をカットするために使用します。

フィルタ2:1秒ごとに更新される最新の測定値と、その前の4データを平 均した値を表示します。

フィルタ3:フィルタ1とフィルタ2を同時に使用します。

6.1.7 保存データについて

保存データの種類

KEW3128で取り扱うデータには以下の3種類が存在します。

● ロギングデータ(RECファイル)

測定開始から終了まで、1秒ごとの測定値(電圧値、電流値、絶縁抵抗値) を記録したデータです。最大90分の測定値を記録することができます。 **□ ギングデータを保存する場合は、測定待機状態でENTERメニュー (⇒P.38) から Rec** 測定記録を選択してください。</u>測定中、LCD上部には保存可能な 残り時間が表示されます。**画面上部の表示項目(⇒P.65)** 保存データ名は "RECXX" となります。(XX:01 ~ 32) ロギングデータは測定開始15秒後から測定値を記録します。 15秒以前の記録データはバー "--"表示となります。 なお、本体表示部にてグラフ表示をさせた場合は、測定開始から15秒まで を直線で繋ぐ表示となります。

※ 付属ソフトウェアの「KEW Windows」を使用して測定可能なリアル タイム測定も同様に、測定開始15秒後からの測定値を記録し、15秒以 前の記録データはバー "--"表示となります。

● 測定記録データ(SAVEファイル)

測定結果のみを記録したデータです。<u>測定結果が表示されている画面で</u> ENTERメニュー (⇒P.38) から Sm 測定値保存を選択してください。 保存データ名は "SAVEXX" となります。(XX:01 ~ 32)

● プリントスクリーン (BMPファイル)

画面イメージを保存したファイルです。**画面イメージを保存するには、プ** リントスクリーンバックライトキーを長押し(1秒以上)してください。 保存データ名は、"BMPXX"となります。(XX:01~32)

保存データの一覧表示

ENTERメニュー (⇒P.37) より Mm 内部メモリを選択します。以下のよう な保存データの一覧を表示します。

ファイルの表示 (⇒保存データの表示) や削除 (⇒保存データの削除)、フォーマット (⇒内部メモリのフォーマット) を行うことができます。 また、データー覧の内容は以下のとおりです。

データー覧には、データの作成日時が最新のものから表示されます。

保存データの表示

保存データを表示する手順は以下のとおりです。

保存データの一覧を表示します。UP/ DOWNキー、シャトルスイッチで選択カー ソルを [LOAD] に移動し、ENTERキーを 押下すると、ファイル選択カーソルが表示 されます。

UP/DOWNキー、シャトルスイッチで選択 カーソルを表示したいファイルに移動し、 ENTERキーを押下します。

読み込んでよいか確認画面が表示されますので、ENTERキーを押下すると、データを読み込んで表示します。ここでESC キーを押下すると、読み込みは行いません。

	2008/05/07 15:17:50
Load	Load? LEFT 28.2%
Dellette Forskit Exit	SAVEO5 0.0 % IF 3088/05/87 15:84:58 BNPO8 1.8 % BMP 1088/05/87 15:83:58 RECO5 12.5 % IF 3080/05/87 14:85:58 BNPO7 1.8 % BMP 3080/05/87 14:82:38 BMPP
ESC E	TER Load? [REC05]

選択したファイルによる表示の違いは以下のとおりです。

● ロギングデータの表示

保存したデータの結果と、電流値、抵抗値のグラフを表示することができま す。測定終了後と同様の操作ができます。**ESCキー**を押下すると、元の表示 に戻ります。

データ表示時の画面上部に表示される項目は以下のとおりです。

● 測定記録データの表示

測定結果のみ閲覧が可能で、グラフ表示はできません。測定終了後と同様の 操作ができます。**ESCキー**を押下すると、元の表示に戻ります。 画面上部の表示はロギングデータの表示と同様です。

● プリントスクリーンの表示

保存したBMPファイルを表示します。表示中はLCD周囲に黒い枠が点滅しま す。**ESCキー**を押下すると、元の表示に戻ります。

保存データの削除

保存データを削除する手順は以下のとおりです。

保存データの一覧を表示します。UP/ DOWNキー、シャトルスイッチで選択カー ソルを [DELETE] に移動し、ENTERキー を押下すると、ファイル選択カーソルが表 示されます。

UP/DOWNキー、シャトルスイッチで選択 カーソルを削除したいファイルに移動し、 ENTERキーを押下します。

削除してよいか確認画面が表示されます ので、ENTERキーを押下すると、デー タを削除して一覧表示に戻ります。ESC キーを押下するとデータの削除は行いま せん。

		2008/05/0 15:18:38
	Delete?	LEFT 28.2%
	SAVE 05 2088/05/83 EMP08 2088/05/83 REC05 2088/05/83 EMP07 2088/05/83	0.0 % IR 18.4 SB BMP 15:03:58 BMP 12.5 % IR 12.5 % IR 1.8 % BMP 1.8 % BMP
ESC EN	ITER Del	Delete? [SAVE05]

内部メモリのフォーマット

内部メモリをフォーマットする手順は以下のとおりです。

保存データの一覧を表示します。UP/ DOWNキー、シャトルスイッチで選択カー ソルを [FORMAT] に移動し、ENTERキー を押下します。フォーマットしてよいか確 認画面が表示されますので、ENTERキーを 押下すると、フォーマットを行って一覧表 示に戻ります。ESCキーを押下するとフォー マットは行いません。

保存可能ファイル数

ロギングデータ、測定記録データ、プリントスクリーンすべてを合わせて、 **最大32ファイル**が保存可能です。

保存容量は、ロギングデータにおいて合計およそ43000データ(約720分) 分の記録が可能です。各ファイルの種類別の最大保存ファイル数の目安は以 下のとおりです。ファイルの組合せによって保存可能なファイル数は変化し ますので、ご注意ください。

ファイル種別		最大保存ファイル数
ロギングデータ	10分データ	32ファイル
	30分データ	23ファイル
	60分データ	11ファイル
	90分データ	7ファイル
測定記録データ		32ファイル
プリントスクリーン		32ファイル

6.1.8 時刻の設定

KEW3128本体時刻の設定手順は以下のとおりです。

ENTERメニュー (⇒P.37)より **回** 時刻 設定を選択します。[年]、[月]、[日]、[時]、 [分]、[表示形式] の順番で設定を行います。 **ENTERキー**で現在設定中の項目の確定とし、 次の項目の設定に移ります。**ESCキー**で前 の項目へ戻ります。

[Finish] の段階でENTERキーを押下する と設定が反映されます。ESCキーを長押し(1 秒以上) すると時刻設定を中止して、前の 画面に戻ります。

6.1.9 デモモードについて

KEW3128はデモモードを搭載しています。

デモモードで測定をおこなうと出力電圧は発生せず、測定値は擬似データを 表示します。

通信や保存など動作については、通常 モードと同じ動作となります。

デモモード中は画面上部に **โ**��� マークが 点滅します。

デモモードは電源をOFFにしても解除さ れません。解除する場合は設定時と同じ くENTERメニュー (⇒P.38) より解除 してください。

6.2 各種絶縁診断

本製品には、絶縁抵抗の測定において、絶縁抵抗(IR)、成極指数(PI)、誘 電吸収比(DAR)、誘電体放電(DD)の自動測定や、ステップ電圧テスト(SV) など絶縁診断のための機能があります。

測定モード	機能
絶縁抵抗(IR)	通常の絶縁抵抗連続測定に使用
成極指数(PI)	2つの測定時間の抵抗値より成極指数を自動測定 (初期値:1分,10分)
誘電吸収比(DAR)	2つの測定時間の抵抗値より誘電吸収比を自動測定 (初期値:15秒,1分)
誘電体放電(DD)	測定終了後の測定物の容量値及び残留電流値より 誘電体放電値を自動測定
ステップ電圧テスト (SV)	設定電圧を20%ずつ設定時間ごとに上昇させる

6.3 IF IR測定

6.3.1 測定設定項目

IR測定の設定項目は以下のとおりです。

設定値の変更方法は、測定の設定(⇒P.31)を参照してください。

IR測定は90分以上の連続測定が可能です。

ただし、90分を超える測定の場合は本体表示部に測定値の表示のみ可能なり、 記録データ/グラフ表示は90分までとなります。

アイコン	名称	説明
Volt.	出力電圧値	出力する電圧値です。

6.3.2 測定結果

IR測定の結果表示項目は以下のとおりです。

表示項目	説明
絶縁抵抗値	測定終了時の絶縁抵抗値を表示します。
測定時間	測定を開始してからの経過時間を表示します。
電圧設定値	設定されている出力電圧値を表示します。
出力電圧値	現在出力している電圧値を表示します。
電流值	現在測定している電流値を表示します。
キャパシタンス	放電時に測定したキャパシタンスを表示します。

6.4 PI測定(成極指数)

6.4.1 成極指数について

成極指数 (PI): Polarization Index

絶縁体の漏れ電流の時間的増加の有無を調べる試験です。成極指数を表すに は、一般的に印加時間10分間での絶縁抵抗値と印加時間1分間の絶縁抵抗値 の比で表します。成極指数は、絶縁体の形状、大きさに無関係な量で吸湿に より変化するので、ケーブルの絶縁診断をおこなう上で重要な意味を持って います。

成極指数 = TIME2(測定3分~10分後)の絶縁抵抗値 TIME1(測定30秒~1分後)の絶縁抵抗値

成極指数による判定は以下のとおりです。

成極指数 1.0以上		1.0 ~ 0.5	0.5以下
判定	良	要注意	危険な状態

6.4.2 成極指数測定方法

① モード選択画面でPI (Polarization Index)を選択します。

モード画面の操作方法については、基本操作(⇒P.22)を参照ください。

② 電圧値の設定をおこないます。

③ TIME1の設定をおこないます。

(PI)	2008/05/07 13:11:34
Time1?	
	l:00
Volt. > Time	e1 Time2 Ready Meas.

④ TIME2の設定をおこないます。

設定が完了すると、測定待機状態になります。

PI測定の設定項目は以下のとおりです。

設定値の変更方法は、測定の設定(⇒P.31)を参照してください。

アイコン	名称	説明
Volt.	出力電圧値	出力する電圧値です。
T ime1	PI時間1	PI時間1の経過時間では測定は終了しません。
Time2	PI時間2	測定が自動で終了する時間です。PI時間1 よりも大きい値にしか設定できません。

DAR値同時表示について

PI測定中及び測定結果表示において、DAR値も同時表示します。(ただし "PI のTIME2>DARのTIME2"の場合)

DARのTIME1,TIME2の設定値は、DARモードで設定した値を使用します。 DARの時間設定については「**6.5.2誘電吸収比測定方法」(⇒P.55)** を参照し てください。

DAR測定モードではPI値の同時表示はありません。

6.4.3 測定結果

PI測定の結果表示項目は以下のとおりです。

表示項目	説明
絶縁抵抗値	測定終了時の絶縁抵抗値を表示します。
PIのTIME1,2の抵抗値	PIのTIME1とTIME2の時点での抵抗値を表示しま す。"OL"表示は表示範囲の『上限』を超えている ことを表しています。
DARのTIME1,2の抵抗値	DARのTIME1とTIME2の時点での抵抗値を表示し ます。"OL"表示は表示範囲の『上限』を超えて いることを表しています。
PI值	PI値(成極指数)を表示します。
電圧設定値	設定されている出力電圧値を表示します。
出力電圧値	現在出力している電圧値を表示します。
電流値	現在測定している電流値を表示します。
キャパシタンス	放電時に測定したキャパシタンスを表示します。
DAR値	DAR値(誘電吸収比)を表示します。

6.5 DAB DAR測定 (誘電吸収比)

6.5.1 誘電吸収比について

誘電吸収比 (DAR): Dielectric Absorption Ratio

誘電吸収比(DAR)は、絶縁の時間経過試験という意味では成極指数(PI) と同じ方法です。唯一の違いは、結果を得るための時間が短くなっています。

誘電吸収比 = TIME2(測定30秒~1 分後)の絶縁抵抗値 TIME1(測定15秒~30秒後)の絶縁抵抗値

誘電吸収比による判定は以下のとおりです。

誘電吸収比	1.4以上	$1.25 \sim 1.0$	1.0以下
判定	最 良	良	不良

日本ではPIが一般的でDARはあまり使用されません。

6.5.2 誘電吸収比測定方法

① モード選択画面でDAR(Dielectric Absorption Ratio)を選択します。

モード画面の操作方法については、**基本操作(⇒P.22)**を参照ください。

② 電圧値の設定をおこないます。

③ TIME1の設定をおこないます。

DAR	2008/05/07 13:11:59
Time1?	Min.00:01 - Max.59:00
n	n.ir
L'Olt. 🕨 lime	1 LimeZ Cleady Viveas.

④ TIME2の設定をおこないます。

DAR	2008/05/ 13:12:0	07 15
Time2?	,	h
	Min. 00:16 - Max. 60:00	
	1-111	
	min. sec.	
		э.

DAR測定の設定項目は以下のとおりです。 設定値の変更方法は、**測定の設定(⇒P.31)**を参照してください。

アイコン	名称	説明
Volt.	出力電圧値	出力する電圧値です。
Time1	DAR時間1	DAR時間1の経過時間では測定は終了しません。
Time2	DAR時間2	測定が自動で終了する時間です。DAR時 間1よりも大きい値にしか設定できませ ん。

6.5.3 測定結果

DAR測定の結果表示項目は以下のとおりです。

表示項目	説明
絶縁抵抗値	測定終了時の絶縁抵抗値を表示します。
TIME1,2の抵抗値	TIME1とTIME2の時点での抵抗値を表示します。 "O L "表示は表示範囲の『上限』を超えているこ とを表しています。
電圧設定値	設定されている出力電圧値を表示します。
出力電圧値	現在出力している電圧値を表示します。
DAR値	DAR値(誘電吸収比)を表示します。
電流値	現在測定している電流値を表示します。
キャパシタンス	放電時に測定したキャパシタンスを表示します。

6.6 DD DD測定 (誘電体放電)

6.6.1 誘電体放電について

誘電体放電(DD):Dielectric Discharge

この試験は、多層絶縁の診断に適用されています。

測定終了1分後の放電電流値および測定物の容量値を測定することにより、 多層からなる絶縁物中に不良がある場合の診断にすぐれた測定方法です。

誘電体放電 = 測定終了して1分後の電流値(mA) 測定終了時の雷圧値(V)×キャパシタンス(F)

誘電体放電による判定は以下のとおりです。

誘電体放電	2.0以下	2.0~4.0	4.0~7.0	7.0以上
判定	良	要注意	不良	非常に悪い

この判定基準は目安ですので、ユーザーの経験に基づき調整、変更が必要な 可能性があります。

欧州にて発電所の高圧発生機器を測定するために開発された測定方法ですの で、この試験は日本ではあまり実績がありません。

6.6.2 誘電体放電測定方法

モード選択画面でDD (Dielectric Discharge)を選択します。
モード画面の操作方法については、基本操作(⇒P.22)を参照ください。

MODE SELECT 2008/05/ 13:12:4	97)
Insulation Resistance	
PI Polarization Index	
DAR Dielectric Absorption Ratio	
DD Dielectric Discharge	
SV Step Voltage	
VtBSI Voltage	
Volt. > Time > Ready > Meas.	-

② 電圧値の設定をおこないます。

③ TIMEの設定をおこないます。

DD測定モードの設定項目は以下のとおりです。 設定値の変更方法は、**測定の設定(⇒P.31)**を参照してください。

アイコン	名称	説明
Volt.	出力電圧値	出力する電圧値です。
Time	測定時間	DD値算出のため、測定が自動で終了す る時間です。

6.6.3 測定結果

DD測定の結果表示項目は以下のとおりです。

表示項目	説明
絶縁抵抗値	測定終了時の絶縁抵抗値を表示します。
測定時間	測定を開始してからの経過時間を表示します。
電圧設定値	設定されている出力電圧値を表示します。
出力電圧値	現在出力している電圧値を表示します。
DD値	DD値(誘電体放電)を表示します。
電流値	測定中は、現在測定している電流値を表示します。 測定終了1分後には、放電電流値を表示します。 内部メモリに保存したデータの電流値は、測定終 了時の電流値を表示します。(※1)
キャパシタンス	放電時に測定したキャパシタンスを表示します。

(※1) アプリケーションソフト(KEW Windows)では、測定終了時の電流値及 び、測定終了1分後の放電電流値も確認できます。

6.7 SV SV測定 (ステップ電圧)

6.7.1 ステップ電圧について

ステップ電圧(SV)

絶縁体に欠陥がある測定物の場合、印加電圧を上げるにつれて、抵抗値が下 がる現象が見られます。ステップ電圧試験はこのような現象を確認するため の試験です。

設定時間ごとに5回、等しいステップで印加電圧を増加させて絶縁抵抗を測 定します。

印加電圧の増加により絶縁抵抗値に低下が見られるときは、測定物の絶縁劣 化が考えられます。

6.7.2 測定設定項目

モード選択画面でSV (Step Voltage)を選択します。

モード画面の操作方法については、基本操作(⇒P.21)を参照ください。

② 電圧値の設定をおこないます。

③ Step Timeの設定をおこないます。

SV測定モードの設定項目は以下のとおりです。

設定値の変更方法は、測定の設定(⇒P.31)を参照してください。

アイコン	名称	説明
Yolt.	出力電圧値	出力する電圧値です。
Step	ステップ時間	1ステップの時間です。

SV測定モードではステップ時間(V5)に達した後も測定を継続し、最大90分で自動的に測定を停止します。

6.7.3 測定結果

SV測定の結果表示項目は以下のとおりです。

表示項目	説明
絶縁抵抗値	測定終了時の絶縁抵抗値を表示します。
各ステップ時間の 抵抗値	各ステップ時間(V1 ~ V5)での抵抗値を表示し ます。"O L "表示は表示範囲の『上限』を超えて いることを表しています。
電圧設定値	設定されている出力電圧値を表示します。
出力電圧値	現在出力している電圧値を表示します。
電流値	現在測定している電流値を表示します。
キャパシタンス	放電時に測定したキャパシタンスを表示します。
ステップ時間	設定されている1ステップの時間を表示します。

6.8 測定画面

画面上部の表示項目

LCD上部の表示項目は以下のとおりです。

表示項目	説明
測定モード	現在の測定モードのマークが表示されます。
REC表示/ 記録可能残り時間	REC指定されている場合に表示されます。記録可 能な残り時間が、バーグラフと数値で確認できま す。
フィルタモード	設定されているフィルタが表示されます。
ENTERメニュー	このアイコンが表示されている時に、ENTERキー を押下すると、ENTERメニューを表示することが できます。
電源マーク	電池残量、または外部電源マークが表示されます。
現在時刻	現在の日付、時刻が表示されます。

測定値表示画面の表示項目

測定待機中、測定中の測定値表示項目は以下のとおりです。

表示項目	説明
電圧警告マーク	電圧を出力している時に表示されます。 放電中は、警告マークが点滅します。
バーグラフ	現在の絶縁抵抗値をバーグラフで表示します。
測定情報	各測定モードの付加情報を表示します。
測定時間	測定を開始してからの経過時間を表示します。
電圧設定値	設定されている出力電圧値を表示します。
出力電圧値	現在出力している電圧値を表示します。
絶縁抵抗値	現在測定している絶縁抵抗値を表示します。
電流値	現在測定している電流値を表示します。
測定設定値	各測定モード固有の設定値を表示します。

グラフ表示画面の表示項目

測定待機中、測定中のグラフ表示項目は以下のとおりです。

表示項目	説明
電圧警告マーク	電圧を出力している時に表示されます。 放電中は、警告マークが点滅します。
グラフ表示	現在の絶縁抵抗値をバーグラフで表示します。
電流値軸/ 抵抗値軸	電流値グラフの時は電流値軸、抵抗値グラフの時 は抵抗値軸が表示されます。
測定時間	測定を開始してからの経過時間を表示します。
電圧設定値	設定されている出力電圧値を表示します。
出力電圧値	現在出力している電圧値を表示します。
電圧値軸 (SVモード時)	SV測定モードの場合のみ、電圧値軸を表示します。
測定設定値	各測定モード固有の設定値を表示します。

6.9 キャパシタンス測定

6.9.1 測定画面

表示項目	説明
容量値	絶縁抵抗測定終了後、測定物の容量値を表示します。
測定時間	測定を開始してからの経過時間を表示します。

キャパシタンスの測定値は絶縁抵抗測定終了後に表示されます。また、絶 縁抵抗測定時に出力電圧が設定電圧の8割以下の場合、キャパシタンスは "- - -"表示となります。

10μF以上の測定においては、製品の保護のため充電電流に制限がかかる プロテクトモードとなります。プロテクトモードの場合は、LCDに "Protect mode" が表示されます。

プロテクトモードは充電が完了した場合、またはプロテクトモードが5分 間継続した場合に、自動的に解除されます。

6.10 Vtest 電圧測定

6.10.1 測定画面

電圧測定モードの表示項目は以下のとおりです。

表示項目	説明
周波数	現在測定している周波数を表示します。
直流/交流表示	測定電圧の直流/交流を表示します。
電圧値	現在測定している電圧値を表示します。

6.11 その他の機能

6.11.1 ガード端子の使用例

ケーブルの絶縁抵抗を測定する場合、被覆の表面を流れる漏洩電流が絶縁物 内部を通る電流と合成され、絶縁抵抗値に誤差を生じることがあります。こ れを防ぐため、下図のように漏洩電流の流れる部分に保護線(導電性の裸線 であれば何でも良い)を巻きつけガード端子に接続すると、漏洩電流は指示 計には流れず、絶縁物の体積抵抗だけが測定できます。

なお、ガード端子との接続には、付属のガードコードを使用してください。

G端子接地法

G端子接地方式は、ガード端子を使用する測定方法で、高圧ケーブルに他の 高圧機器を含む電路を一括して測定する場合に適応します。

ガード端子を測定物の接地極に接続し、ケーブルのシールド線にアース端子 を接続して測定します。その際、ケーブルのシールド線は接地極からはずし ます。

ただし、この測定方法を用いる場合は、シース(シールド線と大地間)の絶 縁抵抗値が1MΩ以上であることが必要となります。

高抵抗測定時のガード端子の利用

高抵抗(数100GΩ以上)の測定をおこなう場合には、電池駆動の場合に外 部電源駆動の場合と比べて測定値の収束が遅い場合があります。

その際には、ガード端子に接続したガードコードをアースコードに巻きつけ て測定をおこなうと、より正確に測定が可能となります。

6.11.2 バックライト機能

暗い場所及び夜間作業の場合はバックライトを使用してください。 レンジスイッチがOFF以外のとき、バックライトボタンを押すと約1分間点 灯し自動的に消灯します。

6.11.3 オートパワーオフ機能

測定ボタンなどの操作が無かった場合、約10分で自動的に電源が切れます。 タイマー測定時は、測定終了(SVモードでは自動測定停止後)から10分経 過後電源が切れます。復旧するには一度レンジスイッチをOFFにし再度測定 するレンジに合わせてください。

7. 電池の充電および交換方法

7.1 **電池の充電方法**

▲ 危険

電源コードは付属の専用コードを使用してください。

電源コードは必ずコンセントに接続してください。またAC240Vより高い電 位のある場所には絶対に接続しないでください。

(付属の電源コードMODEL7169の最大定格電圧はAC125Vです。)

使用中の電池のメーカーによって定義されている取り扱い及び保存方法を 守ってください。

▲ 警告

電源コードの接続は必ず先に本体側から行い、根元まで確実に差し込んでく ださい。 使用しているうちに亀裂が生じたり、金属部分が露出したときは、直ちに使 用を中止してください。 電源コードのプラグをコンセントから抜くときは必ず差し込みプラグを持っ て抜いてください。

- ① レンジスイッチをOFFにします。
- ② 本体に電池が取り付けられていることを確認してください。
- ③ 本体に電源コードを接続し、電源を供給してください。
- ④ 電池充電ランプが赤色に点滅し、LCDのバッテリマークが点滅します。
- ⑤ 充電が完了すると電池充電ランプが緑色に点灯し、LCDのバッテリマーク が点灯します。(充電は約8時間で完了します)

※電池寿命及び充電可能回数は、使用方法及び環境によって異なります。

※充電式の鉛蓄電池を低電圧状態で保管すると、電池寿命を縮めたり、電池を 損傷したりする恐れがあります。長期間の保存する際には、一定の期間ごと に完全に充電してください。
7.2 電池の交換方法

▲ 危険

測定中は電池の交換は絶対にしないでください。

▲ 警告

感電事故をさけるため、電池交換の際には測定コードを本体からはずしてく ださい。また、交換後は必ず電池蓋のネジを締めてから使用してください。

▲ 注意

電池の極性をまちがわないように、下記説明に従い正しく接続してください。

- ① 電源コードは、本体からはずしてください。
- ② レンジスイッチをOFFにし、測定コードを本体からはずしてください。
- ③ 本体側面の電池蓋を止めているネジを取りはずし、電池蓋を上にスライド させてはずしてください。

(このときネジを紛失しないように、ご注意ください)

④ 電池引き出し板を手前に引き、電池を本体より引き出してください。

⑤ プラス極、マイナス極のコネクタをそれぞれ上向き(下図左の矢印の方向) に引き上げ電池より取りはずしてください。

⑥ 古い電池を本体より取り出し、新しい電池(鉛蓄電池PXL-12050:12V 5Ah)を本体にセットします。コネクタの向き(上図右)と電池の金属端 子に曲がりなどの変形が無いことを確認して正しい極性で電池を取り付 け、本体奥へと押し込んでください。

このとき電池引き出し板も同時に奥へと移動します。

⑦ 電池蓋を本体との段差がなくなるまで差し込んでください。その状態でネジを締めてください。

8. 通信機能/付属ソフトウェア

この章では本製品とパソコンの通信および付属ソフトウェアのインストール 手順と操作方法について説明します。

● インターフェース

本製品は付属のUSBアダプタ(M-8212)と組み合わせることでパソコンと USB通信が可能です。通信用の8212USBのケーブルは必ず付属のケーブル を使用してください。

通信方式 : USB Ver1.1準拠

USB通信で以下のことが行えます。

- ・ 本体の内部メモリ内のファイルをパソコンへダウンロード
- ・ パソコンから本体の設定
- リアルタイムに本体からの測定値をパソコン上でグラフ表示、および データ保存

● ソフトウェア

KEW Windows for KEW3128(付属CD-ROM)

● パソコンの推奨動作環境

・OS(オペレーションシステム)

WindowsのOSはCDケースのバージョンラベルを参照してください。

・メモリ

256Mbyte以上

・画面表示

解像度1,024×768ドット、65,536色以上

- ・HDD(ハードディスク)
- 空き容量100Mbyte以上
- •. NET Framework (2.0以上)

● 商標について

- ・Windows®は米国マイクロソフト社の商標です。
- ・Pentiumは米国インテル社の商標です。

8.1 付属ソフトウェアのインストール手順

ここでは「KEW Windows」および「KEW Windows for KEW3128」のイン ストール手順を説明します。

① 最初に以下を確認します。

- インストールする前に、パソコンで起動しているすべてのアプリケーションを終了させてください。
- インストールが終了するまで、本体を接続しないで下さい。
- Administrator(コンピュータ管理者)権限でインストールを行ってください。
- ② 付属のCD-ROMをCD-ROMドライブにセットします。
 自動でセットアッププログラムが起動しない場合は、「KEWLauncher.
 exe」を実行してください。

下記の画面が表示されますので「次へ」をクリックします。

③ ソフトウェア使用許諾契約書の内容を理解していただき、「同意します」 をチェックして「次へ」をクリックします。

影 KEW Windows - InstallShield Wizard	X
使用許諾契約 次の使用許諾契約書を注意深くお読みください。	
ソフトウェア使用許諾契約書	*
共立電気計器株式会社(以下弊社といいます)は、お客様に弊社が提供す るソフトウェアプログラム「KEW Windows」(以下本許諾製品といいま す)を本使用許諾契約の各条項に従い使用する権利を許諾します。お客様 が本使用許諾契約にご同意いただけない場合、お客様は本許諾製品を使 用することはできません。	
1. 使用許諾 1. 使用許諾 1. 水安様注水注意型見た口水団内/-おいて お安様ど自負が借田オスた ◎ 使用許諾契約の条項に同意します(A)	-
InstallShield	

④ ユーザ情報を入力して「次へ」をクリックします。

岁 KEW Windows - InstallShield Wi	zard	x
ユーザ情報		
情報を入力してください。		
ユーザ名(U):		
KYORITSU		
所属(O):		
InstallShield		
	< 戻る(<u>B</u>) 次へ(N) >	キャンセル
InstallShield	< 戻る(<u>B</u>) // 次へ(N) >	キャンセル

 インストールを確認して「インストール」をクリックするとインストー ルを開始します。

KEW Windows - InstallShield Wizard
プログラムをインストールする準備ができました ウィザードは、インストールを開始する準備ができました。
インストールの設定を参照したり変更する場合は、「戻る」をクリックしてください。「キャンセル」をク リックすると、ウィザードを終了します。
現在の設定:
セットアップ タイブ:
標準
インストール先フォルダ:
C:¥Program Files¥KEW¥KEW Windows¥
マーザ 唐幸服:
名前: KYORITSU
会社:
InstallShield
< 戻る(<u>B</u>) (インストール(I) キャンセル

⑥ 「完了」をクリックしてインストールを終了します。

⑦ 「KEW Windows」のインストール後に、「KEW Windows for KEW3128」のインストールが始まります。

● 「KEW Windows for KEW3128」は「KEW Windows」と同様の手順でイン ストールを行ってください。

本ソフトウェアのアンインストールは「コントロールパネル」の「アプリケー ションの追加と削除」にて行ってください。

8.2 「KEW Windows for KEW3128」の起動

● 起動と終了

デスクトップ上の「KEW Windows」アイコンをクリックするかまたは、「ス タート」→「プログラム」→「KEW」→「KEW Windows」をクリックして 起動します。

「KEW Windows」にインストールされているKEW製品の一覧が表示されま す。一覧から「KEW3128」を選択して、「次へ」をクリックすると、「KEW Windows for KEW3128」のメニューが表示されますので、目的に応じて「デー タダウンロード」、「本体設定」をクリックします。

Quality and reliability is our tradition	Quality and reliability is our tradition
KYORITSU	KYORITSU
モデルー覧 以下の一覧からモデル名を選択してください。 KEW3128 ver.1.00	 KEW3128 ビークダウンロード ホ(本からのデークをダウンロードします。 ビーク表示 記録したデークの解析を行います。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

9. アクセサリ

9.1 ラインプローブ用先端金具の説明及び交換方法

①先端金具の種類

標準先端金具・フックタイプ 引っかけ測定時に使用します。 (購入時に、ラインプローブに取り付けてあります。)

MODEL 8029:先端金具・ストレートタイプ(付属品)

②交換方法

ラインプローブ先端部分を左に回すことにより、装着している先端金具を はずすことができます。

交換したい先端金具をプローブ先端の六角穴に入れ、プローブ先端部分と 一緒に右に回し、しっかりとネジ締めします。

10. 製品の廃棄について

(この指令はEU圏内のみ有効です。)

この製品は、WEEE指令(2002/96/EC)マーキング要求に準拠します。張付け されたラベルは、この電気電子製品を一般家庭廃棄物として廃棄してはならな いことを示します。

製品カテゴリ

WEEE指令の「付属書1」に示される製品タイプに準拠して、この製品は"監視 及び制御機器"の製品として分類されます。

鉛蓄電池の廃棄について

使用された方がご自身で廃棄される場合は「廃棄物の処理および清掃に関する 法律」の適用を受けるのでご注意ください。

廃棄される場合は、地域の法令に従ってください。

なお、廃棄時には、端子を粘着テープで絶縁してください。使用済み鉛蓄電池 でも電気エネルギーが残っていますので、端子の絶縁が不充分だと、爆発や火 災の原因になる恐れがあります。

11. アフターサービス

●修理・校正を依頼されるには

お買い上げいただいた販売店または弊社サービスセンターにお送りください。

●製品のご使用に関するお問い合わせは 弊社お客様相談室にご連絡ください。

●校正周期について

本製品を正しくご使用いただくため、定期的(推奨校正周期1年)に校正 することをおすすめいたします。

●補修用部品の保有期間 本製品の機能・性能を維持するために必要な補修部品を製造打ち切り後、 5年間を目安に保有しています。

 ■ホームページのご案内 www.kew-ltd.co.jp
 ●新製品情報
 ●取扱説明書/ソフトウェア/単品カタログのダウンロード
 ●販売終了製品情報

	KEW	312	8	製	告番	号						
仔	R証期間	ご見	購入E] (年	ļ	∃		1)	こり 1	年間
共常さ	立製品を なご使用 せていた	お買 状態 だき:	い上げ で万一 ます。	いた 故障 本書 る	だきま が生し を添付	ありが じた場 †の上る	とうこ 合は、 ご依頼	ござい 保証 [くだ]	ます 規定 さい。	。保 によ	証期間 り無償	間内にI 資修理る
	お名前											
	ご住所	Ŧ										
_	TEL											
◎ 保	本保証書 This war 証規定	は日 ranty	本国内 is vali	でのa d onl	タ有効 y in 、	りです。 Japan.	•					
催保 但 1.		に生 事項(明書と	じまし こ該当 : 異な	た故障 する る不通	章は無 易合は 箇切な	₹償で(は対象; こ取扱(修理い から除 い、ま	たし 外さ+ たはf	ます。 せてい 使用	いた <i>た</i> 方法:	ごきま が原因	す。 目で発生
2.	した お買い が加わ・	_早 。 上げ徇 って生	後の持 Eじたま	ち運て な障。	バや斬	送の	間に、	落下	させ	るな。	ど異常	常な衝撃
3. 4. 5.	弊社サ- 火災、 傷など	- ビス 也震、 外観上	(担当者)水害、の変化	皆以外 公害 と。	によ 及び	る ひ そ の 他	しの天	理が原 変地異	夏因て 見が原	[§] 生じ 夏因で	た故 生じ /	^{章。} た故障。
6. 7. 8.	その他 電池なる 保証書(^{卒社の} ビ消耗 のご携)貢任る 話の う 提出が な	こ 見な を換、 ない場	され 補充 合。	ないお 。	【障。					
			共					株	式		杠	

